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Abstract— Robot-assisted rehabilitation therapies usually fo-
cus on physical aspects rather than on cognitive factors.
However, cognitive aspects such as attention, motivation, and
engagement play a critical role in motor learning and thus
influence the long-term success of rehabilitation programs.
This paper studies motor-related EEG activity during the
execution of robot-assisted passive movements of the upper
limb, while participants either: i) focused attention exclusively
on the task; or ii) simultaneously performed another task.
Six healthy subjects participated in the study and results
showed lower desynchronization during passive movements
with another task simultaneously being carried out (compared
to passive movements with exclusive attention on the task). In
addition, it was proved the feasibility to distinguish between
the two conditions.

I. INTRODUCTION

Neurological disorders or brain lesions such as stroke,

cerebral palsy, or spinal cord injury may cause partial or

complete loss of mobility in limbs. For people suffering any

of the aforementioned motor disabilities, the rehabilitation

programs, either assisted by a therapist or by a robotic device,

aim to recover functionality in the impaired limbs [1]. Reha-

bilitation programs are based on the intensive and repetitive

execution of therapeutic movements of the affected limbs,

and aim at regaining and improving muscle strength, motor

coordination, and dexterity [2]. Robot-assisted rehabilitation

therapies are advantageous because they use information

from force and kinematic sensors, or information from the

peripheral nervous system (PNS) such as muscle activity

(EMG), to drive and control movement-assisted devices. It

has been demonstrated that rehabilitation programs may help

maintain and promote neural cortical circuits that induce

motor re-learning [3].

However, highly repetitive and non-challenging move-

ments focus only on the physical aspects of rehabilitation,

although cognitive factors (such as attention, motivation,

and engagement) play an essential role in the outcome and

success of therapy [4]. This occurs because the execution of

movements during long time periods can diminish motivation
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and engagement, and can divert attention towards other men-

tal tasks, thus, compromising the success of both the physical

improvement and motor re-learning. Therefore the use of

cognitive information such as attention to movements is

essential to maintain rehabilitation strategy; this information

can be directly measured from the central nervous system

(CNS). For instance, if a reduction or loss of attention to

movements is detected, this information could be used to

enhance or change the motor task, reestablishing the patient’s

involvement in the therapy.

Although previous works have demonstrated that attention

to sensory stimuli (visual, auditory, and tactile) modulates

oscillatory EEG activity in the delta and gamma bands [5],

[6], little is known on how attention to movements modulates

brain activity and how to decode and apply this information

to improve robot-assisted rehabilitation programs. Only a

few fMRI studies demonstrated that reducing attention to

movements is associated with a reduction in the activation

of the sensorimotor cortical areas [7]. In addition, EEG

studies have demonstrated the induction of event-related

de/synchronization (ERD/ERS) during passive movements

[8], [9], but the influence of attention on the movements

in the ERD/ERS activation has not yet been studied.

The question is how attention to passive movements mod-

ulates oscillatory EEG activity, and how to distinguish when

the patients are attending to or distracted from the motor task.

The present work studies the influence of attention to move-

ments in the sensorimotor brain oscillations during robot-

assisted passive movements of the upper limb. A proposal

is presented to recognize between passive movements with

exclusive attention on the motor task or passive movements

with attention focused towards another task. Six healthy

subjects participated in this study and the results showed

that different modulation levels in the sensorimotor EEG

activity are induced and that it is feasible to recognize the

two conditions.

II. METHODS AND MATERIALS

A. Data recording and Robot

1) EEG system: EEG activity was recorded by a gTec

system (2 synchronized gUSBamp amplifiers), with 32 elec-

trodes according to the 10/10 international system, with the

ground on FPz and reference placed on the left earlobe. The

EEG signals were acquired with a sampling frequency of

256 Hz, power-line notch-filtered and bandpass-filtered from

0.5 Hz to 100 Hz using a zero-phase shift filter.
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Fig. 1. Upper panel: Snapshot of the experimental setup showing a par-
ticipant with the EEG and the robot attached to his right arm. Lower panel:
Temporal sequence of one trial during the execution of the experiment.

2) Robot system: A 7 DoF robotic arm attached to the

right arm was used for the experiment. The robot was

programmed to perform natural and safe flexion-extension

movements of the elbow, simulating the action of a therapist.

The patient fixed the upper arm to a fixed structure and the

forearm to the terminal element of the robot. The robot was

equipped with an electric switch that sent a synchronization

signal to the EEG system to record the actual onset and end

of movements.

B. Experimental design

Six right-handed male healthy volunteers participated in

the experiments (age range: 25−39 years) after the protocol

was approved by the Institutional Review Board of the

University of Zaragoza.

The volunteers were seated in front of a computer screen

with the right arm comfortably fixed to a rigid base and

the robot‘s end-effector holding the middle part of the right

forearm (Figure 1). The subjects were instructed to look at

the screen and to relax while the robot executed flexion-

extension movements through rotation of the elbow (only

the forearm could be moved). The initial position of the right

arm was fully extended and pointing down towards the floor.

The final position was the maximum possible flexion that

the subject could perform naturally and effortlessly. The left

upper limb was resting on the subject’s lap.

The experiment consisted of two conditions. In both

conditions the robot was programmed to execute the move-

ments and the subjects were instructed to make no muscle

contraction effort (passive movements or PM). For condition

one, subjects were encouraged to focus their attention on the

movement (passive movements with attention or PM+A). In

condition two, the subjects had to mentally count back in

threes, starting in a self-selected random three digit number

for each trial (passive movements with distraction or PM+D).

The system indicated the different phases of the experiment

through two auditory cues (Figure 1) to the user. The first

cue was given five seconds before robot motion. The user

had to relax his body. After this period, the robot performed

the total flexion-extension movement for five seconds. Then,

the second cue marked the five seconds rest period before

the next trial.

During the relaxing and movement periods, subjects were

encouraged to maintain a natural and constant posture and

to minimize blinking while maintaining the gaze fixed at

the center of the screen (they had no visual access to the

arm). For the remaining time, subjects were allowed to blink

and rest. The experiment was executed in blocks of 7.5 min

each (30 trials were recorded per block, each trial lasting 15

s), and 90 trials were recorded for each condition. Subjects

rested between blocks.

C. Data Preprocessing

After the recording sessions, EEG signals were collected

from -3 to 3 seconds with respect to the robot‘s movement

onset (Figure 1). All EEG epochs were visually inspected

and noisy (contaminated with EMG or EOG activity) trials

were discarded and not used in further analysis. In each

condition, the across-trials average was removed from the

individual trials, to eliminate the evoked activity generated

by the auditory stimulus presented during the experimental

protocol.

D. ERD/ERS analysis

The power spectra at different frequency bands of the EEG

activity was computed with a time-frequency analysis based

on the complex Morlet‘s wavelet [10]. The time-frequency

representation (TFR) was computed for all trials in each

condition from 2 to 100 Hz with a frequency resolution

of 1 Hz. The statistical significance of the power decrease

(ERD) or increase (ERS) relative to the baseline in the time

interval from -3 to 0 seconds was computed with the t-

percentile bootstrap algorithm [11] with a significance level

of α=0.01. This analysis was performed individually for

each subject in each condition to obtain the statistical maps

of ERD/ERS. ERD/ERS was compared in both conditions

(PM+A and PM+D) to analyze the influence of attention to

the movements in the sensorimotor brain oscillations.

E. Recognition of PM+A and PM+D

During robot-assisted passive movements it is important

to detect whether the participant is attending to or distracted

from the motor task. Therefore, a classifier was built to

distinguish between PM+A and PM+D. For each trial, the

spectral power of channels (located on the contralateral

motor cortex) and frequency bins (in the motor-related bands)

that presented significant desynchronization were computed

using a 16th order autoregressive model [12] during the

robot motion (t ∈ [0, 3]). The spectral power was used

as features and fed to the classifier. Features were z-score

normalized. A Support Vector Machine (SVM) with a radial
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basis function kernel was employed as it has been extensively

used in different BCI applications [13]. The classification

performance was assessed by a ten-fold cross validation

procedure, where the full set of trials were sampled without

replacement to create independent training and test sets

for each fold. To measure performance: (i) classification

accuracy was defined as the percentage of correctly classified

labels, and (ii) the confusion matrix was computed in each

fold and averaged for all of them.

III. RESULTS

A. ERD/ERS maps

Figure 2 shows for all subjects and for both conditions

the ERD/ERS maps in one electrode located above the con-

tralateral motor cortex (for each subject the electrode with the

higher observed significant desynchronization was chosen).

Note that although the ERD/ERS maps were calculated for

the 2-100 Hz frequency range, no significant power increase

or decrease was found in the γ band (>40 Hz). Therefore,

only frequencies up to 50 Hz are shown. For all subjects

(except subject 4), and in both conditions, the maps clearly

show significant desynchronization in the α and/or β bands

from 0 to 3 s. This desynchronization agrees with other

studies reporting that motor-related brain oscillations are

observed during passive movements [9], which is induced by

the afferent input from the peripherals to the cortical areas

activated in the execution of the motor task [8].

Note also that for subjects 1, 2, 3 and 6, the observed

desynchronization is lower (or even absent) in condition

PM+D. In order to examine these differences, the average

of significant desynchronization contained in the α and β

bands from 0 to 3 s were obtained in both conditions and

for all subjects (the bounds for the bands were individually

selected for each subject by visual inspection). These results

are shown in Figure 3. For the α band, the results show

that (except for subject 5) the desynchronization is greater

in PM+A than in PM+D, and the average for all subjects is

-41% for PM+A and -29% for PM+D. For the β band, the

desynchronization is also greater in PM+A than in PM+D

(although for subject 2 the differences were minimal), and

the average for all subjects is -38% for PM+A and -27%

for PM+D. In both bands, there is no desynchronization in

subject 4, as shown in figure 2. These results suggest that

the desynchronization in the motor cortex, induced during

the execution of passive movements, is reduced when the

subjects simultaneously performed another distracting task.

B. Classification results

The classification accuracy obtained for all subjects and

the overall average is shown in figure 4a. In the average

for all participants, a significant (p < 0.01) classification

accuracy of 76.37% was obtained (following [14] the chance

level is 62.50%), which indicates a high performance in the

recognition of PM+A and PM+D. Note that for subject 4

the classification accuracy (55.75%) is at the chance level,

which is due to the spectral power features were not well
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Fig. 2. ERD/ERS maps for all the subjects in the electrode with the higher
observed desynchronization located above the contralateral motor area. (a)
ERD/ERS maps for condition PM+A. (b) ERD/ERS maps for condition
PM+D.

discriminated between the classes (as no significant desyn-

chronization was obtained). In addition, figure 4b shows the

confusion matrix of the classification results averaged across

subjects. This shows a slightly better performance in the

recognition of PM+A. These results show the feasibility to

detect whether, during robot-assisted passive movements, the

attention is focused on the motor task or on another different

task.

IV. CONCLUSIONS

This paper studied sensorimotor brain oscillations during

the execution of robot-assisted passive movements of the

right upper limb, while the participants focused their atten-

tion on the task or while they simultaneously performed

another task. On one hand, significant desynchronization
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Fig. 3. Mean±std values of desynchronization contained in the (a) α and
(b) β bands from 0 to 3 s for all subjects and the overall average.
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Fig. 4. (a) Classification accuracy obtained for all subjects and the overall
average. (b) Confusion matrix averaged for all subjects, for the classification
of PM+A versus PM+D. Abscissa: real classes. Ordinate: predicted classes.

patterns in the motor-related frequency bands were obtained

in electrodes located above the contralateral motor cortex.

The induction of these motor rhythms is due to the processing

in the motor cortical areas of motor information from the

peripherals received through the afferent pathways [8], [9].

These patterns of desynchronization were less relevant when

the subjects were asked to perform an additional task simulta-

neously. This suggests a reduction in the power of the motor

rhythms during therapies based on intensive and repetitive

execution of passive movements (as patients can easily

be distracted towards another mental task), and therefore

reducing the potential benefits of the therapy. On the other

hand, this study examined the classification between passive

movements with the subjects exclusively attending the task

and passive movements with the subjects simultaneously

performing another task (PM+A versus PM+D). The high

accuracy of classification results indicated the feasibility

to discriminate between them. These results are potentially

interesting for applications in movement-assisted devices, as

this information could be used to indicate to the system

that the therapy is not being fruitful and thereby to enhance

or to change the therapeutic paradigm. Finally, the authors

understand that the application towards patients with real

motor impairments (such as those produced by spinal cord

injuries) requires further investigation, as the lesions could

affect the afferent pathways that interconnects the limbs with

the cortex, and thereby eliminating the induction of the motor

rhythms.
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