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Abstract—Atrial fibrillation (AF) arises from complex spa-
tiotemporal atrial activation. Current treatment for patients
with AF when antiarrhythmic drugs have failed is catheter
ablation which uses Radiofrequency (RF) energy to destroy
heart tissues that drive AF. Therefore, AF can be terminated
once the AF source is localized and eliminated by RF ablation.
There is considerable interest in defining whether complex frac-
tionated atrial electrograms (CFAE) indicate AF-perpetuation
sites. This work proposes a novel time-frequency (TF) based
algorithm to characterize CFAE electrograms (EGMs). The
proposed technique obtains an automated classifier that is
trained based on the differences evidenced between the TF
structures of CFAE and non-CFAE EGMs. These character-
istics are quantified using 5 TF features which are extracted
using a TF matrix decomposition method performed on the
EGM. The results from 5 patients with AF show that the
proposed method is successful in identifying CFAE vs. non-
CFAE EGMs, and might open new perspectives for a novel
and reliable mapping technique to accurately characterize and
understand AF mechanism.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common, abnormal

rhythm of the heart that can cause significant morbidity

including heart failure, stroke and increase mortality. Great

strides have been performed in understanding the initiation

and continuation of AF, and localizing the AF trigger sites;

however, the mechanisms sustaining the AF is far less

clear. In vivo AF mapping studies in humans have proposed

two hypothesis for maintenance of AF: dominant frequen-

cies (DF) [1] and complex fractionated atrial electrograms

(CFAE) [2]. DF mapping is predicted on the hypothesis that

finding the highest frequency activation sites will identify

focal drivers for AF, while CFAE mapping attempts to

find sites manifesting short cycle length activities that may

perpetuate AF. Ablating at CFAE sites has demonstrated

contradictory success rates in improving AF ablation, while

AF sources consistent with high DF sites have mainly shown

in animal studies such optically mapped sheep AF. In terms

of signal analysis techniques, a spectral approach has been

proposed to estimate the DF of the EGM [3], and temporal

analysis and algorithms have been suggested to localize

CFAE regions [2]. However, the accuracy and efficiency of

these techniques in identifying clinically relevant AF sources

remains controversial.
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Fig. 1. Schematic of the proposed TF feature extraction method for CFAE
identification. Ten feature vectors are extracted from each EGM (x(t)), and
each vector includes 5 values.

The pathophysiology of CFAE is not well defined. Al-

though some CFAE indicate critical substrate based on

intraoperative human AF mapping studies, catheter ablation

of CFAE sites has demonstrated only 30-50% freedom

from AF at 1st year. The present study proposes a novel

and reliable signal analysis technique to characterize CFAE

EGMs which are associated with AF maintenance sources

in order to localize driver sites in patients prior to ablation,

and therefore, improve the success rate of the procedure. In

this paper, we propose a spectral-temporal based algorithm

to localize CFAE from the intracardiac signals collected from

the left atrium during In vivo AF mapping. This method is

based on time-frequency (TF) matrix decomposition method

proposed by our group in order to quantify ECG signals

to predict sudden cardiac death risk. We employ this TF

technique to accurately characterize CFAE in order to detect

these clinically important regions in the left atrium.

II. METHODS

As shown in Fig. 1, the proposed TF feature extraction

algorithm consists of three stages: TF representation, TF

matrix decomposition, and TF feature extraction.

A. TF Representation

Matching pursuit (MP) TF representation was used to

build the TF domain (TFD) of EGMs. MP decomposes a

signal, x(t), into a linear combination of TF functions Gγi
(t)

selected from a redundant Gabor dictionary of TF basis

functions [4]. Once MP selects the collection of TF atoms

that model the signal x(t), MP-TFD of the given signal,

V(t, f), is constructed by summing up the TFD of each

decomposed TF atom as shown below:

V(f, t) =

I
∑

i=1

|aγi
|2WVGγi

(f, t) (1)

where WVGγi
(f, t) is the Wigner-Ville distribution of the

Gabor atom Gγi
(t), and I is the number of selected atoms.
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The MP decomposition with Gabor TF atoms has been

chosen in this study because of its superior TF resolution [5],

cross-term free nature, adaptively, and suitability for pattern

recognition applications. It should also be mentioned that

EGMs may contain both Gabor and non-Gabor structures.

However, the non-Gabor structures are generally random

and noise-like, without definite TF function. If a non-Gabor

structure does belong to the EGM structure, and does not

correlate with any of the TF functions in the Gabor dictio-

nary, it is broken into smaller structures each diluted over

many functions leading to non-sparse representation [4].

B. TF Matrix Decomposition

Non-negative matrix factorization (NMF) is applied to the

TF matrix in such a way that the TF matrix is decomposed

into two sets of vectors denoted with {w1, w2, ..., wr} and
{

hT
1
, hT

2
, ..., hT

r

}

, where r is the number of factors, wi and

hT
i represent the spectral and temporal structure of each

component, respectively. We arrange each vector set into two

matricesW and H base and coefficient matrices, respectively.

The relationship between the decomposed TF matrices and

the original TF matrix can be shown as follows:

VM×N (f, t) = WM×rHr×N ,
=

∑r
i=1

{wfihit} , (2)

where wfi and hit are the elements of base and coefficient

matrices, respectively.

C. TF Feature Extraction

Five TF features are extracted from each base component

and the corresponding coefficient vector: SW , SH , DW , DH ,

and MOW .

1) Sparsity: For each base and coefficient vector, we

extract two sparsity features as explained below:

Swi
=

√
M −

(

∑M
m=1

wi(m)
)

/
√

∑M
m=1

w2

i (m)
√
M − 1

, (3)

Shi
=

√
N −

(

∑N
n=1

hi(n)
)

/
√

∑N
n=1

h2

i√
N − 1

, (4)

This function is unity if and only if the vector contains a

single non-zero component, and is zero if and only if all the

components are equal. For non-CFAE EGMs we expect to

have higher spectral sparsity features (i.e., SW ) and lower

temporal sparsity features (i.e., SH ), while CFAE ones have

lower spectral and higher temporal sparsity values.

2) Sum of derivative: This feature captures the disconti-

nuities and abrupt changes in the EGM:

Dwi
=

M−1
∑

m=1

w′

i(m)2, (5)

where

w′

i(m) = wi(m+ 1)− wi(m), m = 1, ...,M − 1, (6)

and

Dhi
=

N−1
∑

n=1

h′

i(n)
2, (7)

where

h′

i(n) = hi(n+ 1)− hi(n), n = 1, ..., N − 1, (8)

In these features, first, we calculate the derivative of the

vector, and then use the sum of the derivative vector as one

of the features. This feature is small if there is a uniform

structure in the vector (i.e., spectral components in non-

CFAE); otherwise, it is a large value.

3) Moments: The first moment of each base vector,

{wi}i=1,...,r, is extracted as shown below:

MOwi =
M
∑

m=1

mwi(m), (9)

where MOwi is the spectral moment.

III. EXPERIMENTAL ASSESSMENT

In 5 patients with AF (2 paroxysmal, 3 persistent), bipolar

EGMs were recorded from the endocardial surface of the left

atrium using a 20 electrode circular mapping catheter (Lasso,

Biosense Webster) before AF ablation. The 20 electrodes are

paired with 6mm spacing between electrode pairs, and are

evenly distributed around the circumference of the catheter,

which has a variable diameter of 15-25mm. Approximately

30 sites in the left atrium were sampled by roving the circular

mapping catheter within the chamber, and AF was recorded

for 2.5 seconds at each site at a sampling frequency of

1kHz. CFAEs were visually identified if bipolar recordings

contained fractionated EGMs with two deflections or more,

and/or have a perturbation of the baseline with continuous

deflection of a prolonged activation complex and duration

>50 ms, and a very short cycle length (<120 ms) [2].

Figs. 2 and 3 display two EGMs with non-CFAE and

CFAE characteristics, respectively. The frequency and tem-

poral resolution of the TF representation is 512 and 2,500

samples, respectively (i.e., M = 512 and N = 2500). It
can be seen in Fig. 2.A that the non-CFAE signal contains

noncomplex and clearly separable AF activations, while the

CFAE EGM (Fig. 3.A) is complex and fractioned over the 2.5

second. The proposed TF method is applied to both signals

and the decomposed spectral and temporal components are

shown in Figs. 2.C-D and 3.C-D. A value of 10 is experi-

mentally decided to be a suitable choice for the number of

factor (i.e., r = 10). Three different structures were observed
in the decomposed components: (i) Wideband: the spectral

energy is spread over frequency domain (e.g., component 2

in Fig. 2.C). (ii) Narrowband: the spectral energy contains a

narrow range in the frequency domain (e.g., component 4 in

Fig. 3.C). (iii) Multicomponent: there are two narrwoband

energy contents (e.g., component 6 in Fig. 3.C). It can be

seen that the spectral components in non-CFAE EGM are

more wideband, while the ones in CFAE signal are more

narrowband and multicomponent. This observation could be

predicted as the activations in non-CFAE EGMs are steep

deflections which result in wideband components, while the

CFAE contains more sinusoidal structures with narrowband

or multicomponent contents. We have used our proposed
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Fig. 2. A Non-CFAE EGM has been decomposed into spectral and temporal
components using the proposed TF algorithm. A: Electrogram. B: TFD
obtained using MP-TF algorithm (see Section II-A). C and D: Base (i.e.,
spectral components) and coefficient (i.e., temporal components) matrices
decomposed from the TFD (see Section II-B), respectively.

TF feature extraction method to quantify this property of

non-CFAE and CFAE EGMs in order to detect CFAE sites

in the left atrium. The proposed TF features are extracted

from each decomposed matrices as explained in Section II-

C. Fig. 4 shows the obtained features for the two EGMs in

Figs. 2.A and 3.A. There are three clusters of features: non-

CFAE cluster (i.e., C1), CFAE cluster (i.e., C2), and joint

CFAE and non-CFAE cluster (C3). Because of the difference

between the structures of the two EGMs, feature vectors from

the wideband components with organized temporal structure

were located far from the CFAE features which are asso-

ciated to narrowband or multicomponent with disorganized

behaviour in time. The joint cluster is the result of low-

frequency structure of the AF activation morphology (e.g.,

components 1 and 10 in Fig. 2.C and components 1, 5,

and 7 in Fig. 3.C) and should be discriminated from the

other two clusters so that these features do not affect the

final decision making. We have used the aforementioned

difference between the non-CFAE and CFAE EGMs to train

a classifier which can be further used to identify fractionated

EGMs. Three classes are assumed in this work: clusters

dedicated to non-CFAE features, CFAE feature, or joint non-

CFAE and CFAE features.

The classification method applied in this work consists

of two stages. In the first stage, the Self Organizing Tree

Map (SOTM) algorithm is run on the train data to obtain the

cluster centers. Since the formation of the clusters is based

on the representation of the data to the SOTM network, some

of the clusters might not be valid and thus clusters with small

number of samples are eliminated. A membership matrix is

then calculated at this stage based on the distribution of each

class in different clusters. Each entry in the membership ma-

trix, mij (which we call a membership coefficient) indicates

the probability of a vector in the cluster i to belong to the

jth class.

Fig. 3. A CFAE EGM has been decomposed into spectral and temporal
components using the proposed TF algorithm. A: Electrogram. B: TFD
obtained using MP-TF algorithm (see Section II-A). C and D: Base (i.e.,
spectral components) and coefficient (i.e., temporal components) matrices
decomposed from the TFD (see Section II-B), respectively. E and F: The
time domain representation of components 3 and 6, respectively.

Fig. 4. The EGMs in Figs. 2 and 3 are shown in the feature domain. C1:
A cluster with non-CFAE features. C2: A cluster with CFAE features. C3:
A cluster with joint non-CFAE and CFAE features.

M =











m11 m12

m21 m22

...
...

mC1 mC2











(10)

where

mij = p(θj |Ci) (11)

These coefficients will be used in calculation of the member-

ship degree for each of the test vectors. The main advantage

of calculating the membership coefficients is to take into

consideration the overlap of the CFAE and non-CFAE classes

in the feature space. When a signal is projected onto the
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TABLE I

CLASSIFICATION RESULT. GOLD STANDARD: VISUAL INSPECTION [2].

Method Class
Gold Standard

CFAE Non-CFAE

Test

TF features
CFAE 100% 0%

Non-CFAE 0.8% 99.2%

ICL
CFAE 83% 17%

Non-CFAE 0% 100%

feature space, some of its representing vectors may fall in

the areas which are common within two or more classes.

By using this approach, less weight is associated with the

vectors that are located in the overlap area. In the second

stage, each of the feature vectors representing a test signal

is assigned to one the cluster centers found in the previous

stage based on the minimum Euclidean distance criterion.

For each signal the scatter vector, S is defined as

S = [s1, s2, ..., sc] (12)

where si is the number of the representing vectors for a test
signal that fall within th ith cluster and C is the number

of clusters. Finally the probability of a signal belonging to

a non-CFAE or CFAE class is calculated according to the

distribution of its representing feature vectors in different

clusters and can be described as Φ(j) = S.M(j), and the

signal is labeled to belong to the class associated with the

maximum value of Φ(j).

We studied 5 patients with AF and identified CFAE

EGMs using the proposed method. The identification results

are shown in Table I. Also, CFAE was identified using

interval confidence level (ICL) as have been utilized in a

programmable software (CFAE Software Module, Biosense

Webster) which provides online automated identification

display of CFAEs during ablation procedure. ICL [6], de-

fined as the number of intervals between consecutive CFAE

complexes during 2.5 second recordings, and the CFAE

sites with an ICL ≥7 were considered as sites with highly

repetitive CFAEs, which are thought to be potential ablation

targets. The classification results in Table I demonstrates

that the proposed TF feature extraction and classification

successfully localizes the CFAE EGMs with 99.2% accuracy

(i.e. sensitivity = 99.2%and specificity = 100%). This method

offers a significant improvement over ICL algorithm (i.e.,

sensitivity = 100%and specificity = 85%). The proposed

method is more accurate in rejecting the EGMs with no true

CFAE structure. As a result, the ablation procedure could be

led to real CFAE sites and potentially improve the success

rate and reduce the procedure time. Fig. 5.A demonstrates

a case where the ICL method reports an EGM with a high

frequency activation (i.e., DF = 9.2 Hz) as a CFAE source,

while the proposed method correctly identifies that the EGM

is a non-CFAE site. An example of an electrogam with high

DF content (i.e., DF = 8.8 Hz) which both the proposed and

ICL algorithms are successful in identification of the CFAE

site is displayed Fig. 5.B.

Fig. 5. A case of discordance between the proposed TF method and
the conventional ICL. While B is correctly classified as CFAE using both
method, only the proposed TF method successfully identifies the EGM in
A as a non-CFAE site.

IV. CONCLUSION

In this study, we introduced a novel TF based approach

for the identification of CFAE sites, based on TF feature

extraction and classification. This approach builds the TF

representation of the EGMs collected from the left atrium,

and decomposes the TFD into its underlying spectral and

temporal components. It was shown that the decomposed

spectral and temporal vectors show a different behaviour

in case of CFAE or non-CFAE EGMs. This observation

provided a motivation to extract five TF features from these

vectors, and use them for the purpose of localization of

CAFE EGMs. This method was performed on a dataset

collected from 5 AF patients, and exhibited an improved

success rate over the existing automated algorithms for CFAE

detection. The presented algorithm provided a more accurate

approach to locate CFAE sites. The integration of this method

along with DF mapping may lead to successful identification

of critical arrhythmic sites which are potentially arise from

AF sources, and thereby, leading to a customized AF ablation

procedure with a high success rate.
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