
  

  

Abstract - Obstructive Sleep Apnea (OSA) is a serious sleep 

disorder that occurs due to collapsing upper airways (UA). 

More than 80% of OSA sufferers remain undiagnosed and the 

situation demands simplified, convenient technology for 

community screening. Almost all OSA patients snore and 

snoring is the earliest nocturnal symptom of OSA. Snore 

signals (SS) are produced due to vibration of soft tissues in the 

narrowed parts of the UA. It is known that the UA properties 

are gender specific. In this paper, we work under the 

hypothesis that gender specific analysis of snore sounds should 

lead to a higher OSA detection performance. We propose a 

snore based multi-parametric OSA screening technique, which 

incorporates the gender differences in the algorithm. The multi 

feature vector was modeled using logistic regression based 

algorithms to classify subjects into OSA/non-OSA classes.  The 

performance of the proposed method was evaluated by 

carrying out K-fold cross validation. This procedure was 

applied to male (n=51) and female (n=36) data sets recorded in 

a clinical sleep laboratory. Each data set consisted of sound 

recordings of 6-8 hr. duration. The performance of the method 

was evaluated against the standard laboratory method of 

diagnosis known as polysomongraphy.  Our gender-specific 

technique resulted in a sensitivity of 93±9% with specificity 

89±7% for females and sensitivity of 91±8% with specificity 

89±12% for males. These results establish the possibility of 

developing cheap, convenient, non-contact and an unattended 

OSA screening technique. 

I. INTRODUCTION 

Obstructive Sleep Apnea (OSA) syndrome is a serious 
sleep disorder characterized by the repeated closure of the 
upper airway (UA) during sleep. Full closure of airways is 
termed Apnea and a partial closure is known as Hypopnea. 
OSA severity is measured by Apnea-Hypopnea Index (AHI) 
which is calculated by averaging the number of 
apnea/hypopnea events per hour of sleep.  

OSA is highly prevalent among males compared to 

females; and it affects around 20% of US adult population 

and approximately 90% remain undiagnosed [1]. Male 

gender increases the risk of OSA by a factor of 2~3 [2] and 

obesity by 2.33 times [3]. However, recently clinicians start 

focusing more on neck circumference (NC) [3] in clinical 
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observation. NC indirectly indicates the geometrical 

properties of the UA. 
OSA, by definition, is closely coupled with UA patency in 

sleep. The existence of gender specific functional differences 
in UA was highlighted by [4]. 

Loud/disruptive snoring is the most common nocturnal 
symptom of OSA [5,6]. Excessive daytime sleepiness, fatigue 
and tiredness are the associated diurnal symptoms. Extent of 
severity in symptoms found to be different in men and 
women who are having the same degree of sleep disordered 
breathing problems [7].  

Almost all OSA patients snore and snoring is a 

complex acoustical phenomenon [8]. Snoring occurs due to 

vibrations of soft tissues in airway that caused by airflow 

and airway wall compliance imbalance. These acoustic 

waves are spectrally modified by the UA anatomical 

structures (at constrictions) to generate distinctive snore 

sounds (SS) [9]. 

Despite its huge potential, at present, SS are not being 

analyzed in clinical OSA diagnosis. Researchers have 

previously proposed [6,9-12,15,17-18] snore-sound based 

OSA diagnosis techniques. None of these work, however, 

considered the gender-specific information within snoring 

sounds. 

It is a well known fact that there exists gender specific 

differences in vocal tract dimensions, elastic properties of 

tissues and prephonatory glottal shapes that involves in 

speech sound generation [13]. Considering the analogy of 

human speech and snore generation mechanisms, it is highly 

likely that acoustic properties of SS may be influenced by 

gender and gender specific information should be embedded 

in the acoustic properties of SS. 

In this paper we address this issue and develop gender-

specific models for OSA diagnosis based on snore analysis. 

We consider features of snore sounds represent structural 

and functional properties of upper airways.  We also 

implemented gender dependant logistic regression based 

classification algorithm for OSA/non-OSA grouping and 

also cross validated our results.  Easily available NC was 

also augmented to the snore vector to investigate the impact 

of this clinical variable on our proposed algorithm. 

II. METHOD  

Figure 1 shows the overall method followed in this paper. 

A. Subject database 

Our subject database consists of 51 male and 36 female 

subjects who were referred to the sleep clinic, Princess 

Alexandra hospital, Brisbane, Australia for the diagnosis of 

suspected OSA. Table I shows subject database 

characteristics.                                                                 
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B. PSG and snore data acquisition 
The PSG data was collected using Compumedics sleep 

acquisition system and recording montage included EEG, 
EOG, EMG, ECG, Leg movements, nasal air flow, nasal 
pressure, respiratory movements, blood oxygen saturation, 
the body position and breathing sounds. 

A high fidelity, CD-quality computerized data acquisition 

system was used for Snore related sound (SRS) acquisition. 

SRS were captured using two matched low noise 

microphones having a Hypercardiod beam pattern (Model 

NT3, RODE
®

, Sydney, Australia).  Two microphones with 

equal gain were placed 50cm away from each other behind 

the patients head. The nominal distance from the 

microphone to the mouth of the patient was 50cm, but could 

vary from 40cm to 70cm due to patient movements. A/D 

converter unit (Model Mobile-Pre USB, M-Audio
®

, 

California, USA) and a low-end, professional quality pre-

amplifier were used for SRS acquisition.  The SRS 

collection process involved capturing SRS data: the 

amplification, filtering and A/D conversion is done within 

the M-Audio system. The sampling rate was kept at 44.1 k 

samples/s to obtain the best sound quality. However, the 

proposed method did not rely upon on the sound intensity 

and the results were independent of the mouth-to-

microphone distance.  

C. Snore Related Sound segmentation and Voiced Snore 

Segment identification  

 We adopted a pattern recognition algorithm developed by 

our research group [14,15] to categorize SRS into snore, 

breathing and silence. Based on the pitch period presence, 

snore episodes were further scrutinized to recognize voiced 

snoring segments (VSS). (Please refer to appendix for VSS 

definition).    

D. OSA diagnostic feature vector  

 We perceive that speech and snore share many 

commonalities in the mechanism of their generation. 

Inspired by these similarities, we adapt speech processing 

techniques to SS analysis. In below paragraphs, we 

introduce OSA diagnostic features in detail.   

a) Pitch variation based features: We estimated pitch values 

and then calculated mean, standard deviation, skewness and 

kurtosis values for all VSS.  Subsequently, we computed the 

mean and standard deviation of the above variables 

respectively. Those features were augmented with weight 

group pitch variation probability (WGPV) feature which was 

developed in our previous work explained in [15] in detail. 

WGPV captures, quantifies the pitch variations of VSS and 

discounts the effects introduced due to VSS length variation.  

b) Recurrence based features: Spatio-temporal information 
of SS was obtained by adopting a feature commonly used in 
speech disorders analysis [16] named as normalized 
recurrence time probability density entropy (NRTPDE).  We 
computed NRTPDE for VSS and then estimated mean, 
standard deviation, skewness and kurtosis.  We also adopted 
another feature developed in [15] and named as quantified 
recurrence probability density entropy which quantifies the 
extent of deterministic structure presence in VSS. 
c) Formant based features: We recognize that UA physical 
dimension changes may embedded in SS properties which 
get constrained during apnea events. First formant frequency 
(F1) is a resonance frequency of the UA.  We estimated mean 
and standard deviation of F1 for all VSS and computation 
details are explained in [15]. Next, we computed mean, 
standard deviation, skewness, kurtosis of mean F1. We also 
estimated the ratio of VSS that are having values below 
400Hz (b400), between 400 and 800 (bet4800) and above 
800Hz (a800) to total number of VSS.   
 d) Higher order statistics (HoS) based features: We presume 
that SS can be model as a convolution of source signal that 
represents acoustical energy and Total Airway Response 
(TAR) which captures acoustical signature of the UA [17]. 
We quantified the TAR by estimating bispectrum of TAR for 
all VSS and obtaining diagonal slice of principal domain 
triangle. We computed the center frequency, standard 
deviation of frequency, symmetry coefficient, ratio of total 
band amplitude for a given frequency band 
(500,800,1000Hz) ratio of total band amplitude for a given 
frequency band to a total amplitude outside that band 
(500,800,1000Hz), mean and variance of TAR. (Please refer 
[17] for TAR estimation details) 
e) Non-Gaussianity based feature: Non-gaussianity of VSS 
was considered in characterizing OSA. We estimated Non-
Gaussianity Score (NGS) which is a quantitative measure of 
the deviation from Gaussianity of a data segment using a 
method centered on the normal probability plot which is a 
qualitative tool in visualizing the “Gaussianity” of a given set 
of data. We computed mean (gm), standard deviation (gsd) 
and skewness(gsk) of NGS for each VSS.  We derived three 
OSA diagnostic parameters by calculating overall mean of 
gm, gsd and gsk. We further 6 parameters were derived by 
estimating the ratio of total number of VSS to, 1. The number 

TABLE I. Subject characteristics 

 # AHI NC Age BMI 

AHI < 15 Female 19 6.2±4.8 32.9±3.6 49.7±9.9 27.0±8.9 
Male 12 8.7±4.0 42.0±5.2 47.3±12.

3 

33.1±6.7 

       

AHI  >15 
Female 16 41.7±27.

3 

39.5±4.7 52.2±13.

5 

35.7±10.

8 Male 39 45.5±24.

8 

44.8±3.4 53.5±13.

8 

33.0±5.3 

       
       

AHI < 30 
Female 22 9.7±6.7 37.5±3.6 48.4±11.

7 

29.9±8.5 

Male 23 14.1±7 42.9±4.9 48.5±13.

1 

31.9±6.2 

       

AHI  >30 
Female 13 51.8±27.

4 

41.6±3.9 49.6±12.

8 

40.6±9.1 

Male 28 55.5±22.

0 

45.2±3.4 55±13.6 34.0±4.9 

      (# : number of subjects, AHI : Aponea Hypopnea Index, NC: Neck 
circumference, BMI : Body Mass Index) 

 
Fig1. Method consists of Voice Snoring Segment (VSS) identification, 

feature estimation and OSA/non-OSA classification using logistic regression 

analysis technique.  
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of VSS having gm > mean (gm), 2. The number of VSS 
having gm values in between mean (gm) ± standard deviation 
(gm),  3. The number of VSS having gsd > mean (gsd), 4. 
The number of VSS having gsd values in between mean 
(gsd) ± standard deviation (gsd), 5.  The number of VSS 
having gsk > mean (gsk), 6 number of VSS having gsk values 
in between mean (gsk) ± standard deviation (gsk). (NGS 
calculation is illustrated in detail in [18]). 

f) Neck circumference: Obesity is one of the few 

controllable risk factors associated with OSA. But it is 

observed that fat deposition distribution in the body varies 

depending on gender and pharyngeal airway size reduction 

can be better predicted with NC. NC is a common clinical 

variable measured prior to PSG test by sleep technologist on 

the subject before going to bed and the data are readily 

available.  

  

E. OSA/non-OSA classification model 

For the work of this paper, we adopted Logistic regression 

(LR) based method to classify subjects into OSA/non-OSA 

due its robust nature for this application. The dependent 

variable Z is assumed to be equal to “zero” (Z=0) for non-

OSA subjects and “one” (Z=1) for OSA subjects.  A model 

is derived using LR to estimate the outcome variable 

probability Z=1 for a set of n predictor independent 

variables as follows;  

0 1 1
1 2

0 1 1

exp( .... )
( 1| , ,... )

1 exp( .... )

n n

n n

n n

x x
P Z x x x

x x

! ! !

! ! !

+ + +
= =

+ + + +
 

where !m (m=0,1,2....n) is the model parameters estimated by 

the maximum likelihood method.    

F. Model parameter estimation 

 Subject databases were divided into two parts termed as 

training and testing data set.  70% of subjects were randomly 

chosen for the training set and the remaining were allocated 

for testing purposes. We developed 15 such classification 

data sets by randomly picking subjects. It must be noted that 

training and testing sets were independent and mutually 

exclusive from each one another. 

 The training data set was used to derive the model 

parameters (!m : m=0,..,n) and final model was determined 

by removing the non-contributory parameters based on p 

value from the model. Final model parameters were used to 

estimate the probability (Pn) and then classification was 

achieved comparing it with a probability threshold Pthre.  

G. OSA classification model performance evaluation 

We considered the clinical diagnosis was positive for OSA 

at that particular decision threshold, if the PSG derived AHI 

> AHITHRESHOLD (AHITHRESHOLD = 15,30), otherwise 

regarded as negative. For the work of this paper, the clinical 

diagnosis obtained using PSG based diagnosis was 

considered as the absolute truth. The LR analysis based 

classification (OSA/non-OSA) of the subject was compared 

to the ‘absolute truth’, and the class of the decision was 

recorded as one among in true positives, true negatives, false 

positives or false negatives. We found the optimal Pthre value 

by capitalizing on the most widely used Receiver Operating 

Characteristics curve techniques. Sensitivity/specificity 

values were computed for testing data sets for different AHI 

decision threshold values. We K-fold cross validated our 

results by repeating the above process for different 

classification sets.  

III. RESULTS  

 

The compliance between the reference standard PSG and 

our proposed method results were compared.  Next, we 

calculated sensitivity/specificity values for fifteen different 

classification sets for two AHI decision thresholds (15 and 

30) and results are summarized below for the corresponding 

feature vectors.  

 

Table II shows that male female separation allows us to 

obtain increment in sensitivity in the range from 14.1~15.9% 

while at the same time increment of 2.8~3% in specificity. 

Table II and III illustrates that augmentation of neck 

circumference to our feature vector resulted 1.3~1.4% and 

2.5~5% increments in sensitivity and specificity 

respectively.  

 

    Similarly for AHITHRESHOLD=30, table IV shows that, 

adaptation of gender dependant algorithm lead us to obtain 

sensitivity (specificity) increments of 4.6~7.5% (4.7~9.8%). 

Table IV and V illustrates that augmentation of NC to our 

feature vector resulted 2.3~2.5% (1.2~3.6%) increments in 

sensitivity (specificity).  

TABLE II. OSA detection performance for 15 testing data sets when 

considered only snore derived features (pitch, HoS recurrence, formants,  

non-gaussianity features) (for AHI decision threshold = 15) 

 Female Male Male and Female 

AUC 0.97±0.02 0.94±0.04 0.81±0.02 

Sensitivity 93.3 ±9.7 91.5±8.9 77.4±1.98 

Specificity 89.6±9.75 89.4±12.8 86.6±3.52 

PPV 0.93±0.09 0.91±0.08 0.77±0.01 

NPV 0.89±0.09 0.89±0.12 0.86±0.03 

AUC : Area Under Curve, PPV:Positive Predictive Value, NPV:Negative 

Predictive Value, HoS :Higher order Statistics 

TABLE III. OSA detection performance for 15 testing data sets when 

snore derived features augmented with NC (for AHI decision threshold = 15) 

 Female Male Male and Female 

AUC 0.99±0.01 0.96±0.03 0.83±0.05 

Sensitivity 94.6 ±9.1 92.9±9.09 83.7±5.94 

Specificity 94.6±9.1 91.9±7.31 82.7±1.77 

PPV 0.94±0.09 0.92±0.09 0.83±0.05 

NPV 0.94±0.09 0.91±0.07 0.82±0.01 

AUC : Area Under Curve, PPV:Positive Predictive Value, NPV:Negative 

Predictive Value, HoS :Higher order Statistics 

 

TABLE IV. OSA detection performance for 15 testing data sets when 

considered only snore derived features (pitch, recurrence, formants, HoS, 

non-gaussianity features)  (for AHI decision threshold = 30) 

 Female Male Male and Female 

AUC 0.98±0.02 0.88±0.04 0.83±0.05 

Sensitivity 91.2±10.24 88.3±3.22 83.7±5.94 

Specificity 92.5±10 87.4±5.02 82.7±1.77 

PPV 0.91±0.1 0.88±0.03 0.83±0.05 

NPV 0.92±0.1 0.87±0.05 0.82±0.01 

AUC : Area Under Curve, PPV:Positive Predictive Value, NPV:Negative 

Predictive Value, HoS :Higher order Statistics 
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   NC is a one-time measurement done on the subject before 

going to bed, and not a continuous overnight measurement 

can be acquired with an insignificant cost of time and effort. 

 

 

 

 

 

 

 

 

 

 

 

We have not calculated sensitivity/specificity for 

AHITHRESHOLD=5 due to lack of subjects below the threshold 

in our database.  

IV. DISCUSSION AND CONCLUSION 

Although almost all OSA patients snore, snoring itself 
is not a marker of the disease. Development of proper 
diagnostic features by applying advanced digital signal 
processing techniques enabled us to obtain above results 
which are superior to previous reported results of [10,11 and 

12] and also comprehensive. These results established the 

feasibility of developing snore sound based OSA screening 

device. It has also shown that the adaptation of gender based 

algorithm improves the detection sensitivity/specificity.  

Pitch based features contributed evenly in both male and 

female methods. Apart from that, recurrence and higher 

order statistics based features have shown more 

discriminative power in females while first formant and non- 

gaussianity based features were dominant in males.  NC can 

be acquired with no extra cost or effort, improves the 

classification sensitivity/specificity. 

The proposed method is fully automated and free of 

subjective analysis. It does not require a dedicated sleep 

laboratory or the attendance of a sleep technologist. The low 

cost of implementation together with the unprecedented 

diagnostic performance makes it an ideal candidate for 

population screening of OSA.  

However, it is essential to assess our methods using a 

larger database and also evaluate the performance of the 

methods at AHI decision threshold=5 as well. It should be 
noted that these results have been obtained using data 
recorded in a relatively calm hospital environment. These 
methods need to be further verified using recordings 
acquired at ambulatory home environment before 
implementation.  

APPENDIX 

Objective definition for Snoring Episodes (SE),  

(a) We define a term ‘Breath Record’ as the snore related 

sound data originated from the patient from the start of an 

inspiration to the corresponding end of expiration.  

(b) We define a term ‘Snoring Episode’ (SE) as a Breath 

Record with at least one portion of it containing sound with 

a detectable  pitch. The part with detectable pitch is termed 

as ‘Voiced snoring segment (VSS)’. The rest of the SE 

containing sound without pitch is classified as ‘Unvoiced 

snoring segment (UVSS)’.  

(c) A Breath Record that is not a Snoring Episode is called 

a ‘Pure-Breath Record’.  
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