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Abstract - This paper presents the concepts, design, and 

algorithms for a wearable swallow monitoring system. Swallow 

monitoring can be used for assessing a person’s overall food and 

drink intake habits as well as other swallow related disorders. 

The system works based on the key observation that a person’s 

otherwise continuous breathing process is interrupted by a 

short apnea when she or he swallows as a part of food intake 

process. Using a wearable chest-belt, we detect swallows by 

detecting apneas extracted from breathing signal captured by 

the chest-belt. A matched filter based template matching 

framework is developed for swallow detection. A number of 

matched filter template design, both static and iterative, are 

developed for high-accuracy swallow detection. 

I. INTRODUCTION 

In US, 68% of the population is considered overweight 
and/or obese [1], which is a condition that increases the risk 
of coronary heart disease, type-2 diabetes, and various types 
of cancers [2]. Two important components of obesity 
management are diet control and physical exercise. 
Traditionally, researchers have used self-reported 
questionnaires for estimating both food intake and physical 
activity levels for high-risk individuals. In recent years, 
accelerometer based instrumentation techniques [3] are 
starting to emerge as alternatives to self-reporting for 
physical monitoring. For food intake monitoring, however, 
not many instrumented efforts are reported in the literature. 
An instrumented system can eliminate subjectivity [4] 
associated with questionnaire based self-reporting systems.  
   Such an instrumented system can monitor the duration of 
each instance of food/drink intake, which can be used for 
estimating an individual’s eating and drinking habits. 
Detecting a person’s swallow events can enable such 
food/drink intake monitoring applications. An invasive 
method for swallow detection is Videofluoroscopy which is 
used to evaluate patients with neurological conditions 
affecting swallowing [5]. While providing ample information 
about different aspects of the swallow process, these methods 
are too involved and cumbersome to be used for everyday 
monitoring and food/drink intake analysis purposes.   

Non-invasive methods use biological signals such as 
electromyography, sound, and movement to detect swallows. 
Surface electromyography (SEMG) and sound signal are used 
to detect the activation of muscles and the sound associated 
with swallow events [6]. The SEMG electrodes are normally 
attached to the bare skin in the neck region, which may raise 
user acceptability issues for prolonged usage due to cosmetic 
and safety reasons. A two-microphone system is developed in 
[7] for recording chewing and swallowing sound through the 
ear canal as well as externally through the air. Placing such 
microphones has similar cosmetic issues and therefore its 
suitability for prolonged usage is questionable. Respiratory 

Inductance Plethysmography (RIP) is used for swallow 
detection by measuring the airflow [8] in trachea. The RIP 
belts used for this method are often too involving to be useable 
for prolonged use in daily life settings.  

In this paper we develop a wearable sensor system for 
swallow monitoring. The system works based on the key 
observation that during swallowing, because the trachea is 
blocked, a person is not able to breathe, causing a temporary 
apnea. Using a wearable chest-belt, we detect swallows by 
the way of detecting apneas extracted from breathing signal 
captured by the chest-belt. Since the belt can be worn inside, 
outside, or between garments (it does not need skin contact), it 
has the potential for prolonged comfortable daily usage 
without raising any cosmetic issues. After the swallow 
sequence is recorded, swallow pattern analysis can 
potentially be used for identifying non-intake swallows (or 
empty swallows), solid intake swallows, and drinking 
swallows.   

II. SENSOR TYPE AND CHARACTERISTICS  

   A piezo-respiratory belt contains a piezoelectric sensor 
placed between two elastic strips. Stretching the belt exerts a 
strain on the sensor, which generates a voltage proportional to 
the strength of the force. Comparing with other transduction 
principles, such as capacitive, inductive and resistive effects, 
piezoelectric phenomenon provides high sensitivity and 
excellent linearity over a wide amplitude range.  

We use a piezo-respiratory chest-belt in our system for 
collecting breathing signal. Expansion and contraction of the 
chest during breathing creates a modulated voltage at the 
output of a belt-embedded piezo-electric sensor. This voltage 
represents the berating signal.  The static response of the belt is 
shown in Fig. 1:a, which demonstrates good linearity of 
produced voltage as a function of belt elongation.  

  
Fig. 1: Static and transient responses of piezo-respiratory belts 

   Fig. 1:b demonstrates the transient voltage signal captured 
by oscilloscope when the belt is first stretched by 15mm and 
then released after some time. It is notable that the output 
voltage closely follows the mechanical stimuli. The output 
signal is shaped (i.e. DC component removal, amplification) 
and then digitized using a 10-bit ADC with a sampling rate of 
30Hz.  

III. BREATHING SIGNAL AND APNEA ANALYSIS 

Fig. 2 demonstrates two experimentally obtained breathing 
signal segments from one of the subjects.  The ADC readings 
in the figure are directly proportional to the tension on the 
piezo-respiratory belt, meaning the rising edge in the graph 
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corresponds to inhalation and the falling edge corresponds to 
exhalation of a breathing cycle. As shown in the figure, a 
breathing cycle can be either normal (i.e. Normal Breathing 
Cycle or NBC) or elongated due to a momentary apnea caused 
due to a swallow event. A cycle that is elongated due to an 
apnea during the inhale process (see Fig. 2:a) is termed as 
Breathing Cycle with Inhale Swallow (BC-IS). Fig. 2:b shows 
swallows (i.e. apnea) at the beginning of an exhale which are 
termed as Breathing Cycles with Exhale Swallow (BC-ES). 

 
Fig. 2: Example of respiratory and swallow signals 

IV. PROCESSING MECHANISM 

      Fig. 3 depicts the processing modules used for classifying 
breathing cycles towards swallow detection. The first step is to 
pass the ADC output through a low-pass filter for removing 
quantization noise caused by the A-to-D conversion process.  

 
   The second step is to run the filtered data stream through a 
peak and valley detection module in order to extract the 
individual breathing cycles. The next processing module is 
used for normalizing the extracted cycles in both time and 
amplitude dimensions. The objective of normalization is to 
make sure that although different cycles may have different 
time and amplitude ranges (person-to-person and 
cycle-to-cycle), they can be effectively correlated with a single 
template. In other words, the normalization ensures that both 
���� and ���� waveforms for the filter are of same duration.    

The normalized breathing waveforms are then fed into 
three separate matched filters, each with a specific type of 
reference waveform. The filters use reference waveforms 
corresponding to Normal Breathing Cycle (NBC), Breathing 
Cycle with Exhale Swallow (BC-ES), and Breathing Cycle 
with Inhale Swallow (BC-IS), as shown in Fig. 3. The 
similarity score outputs of all three filters are compared to 
classify a breathing cycle as one of the above three types. 

V. PERFORMANCE EVALUATION 

   Experiments with total seven subjects were carried out for 

this project. Representative results for three subjects are 

presented here.. 

A. Experimental Methods 

Each subject performed three sessions, five minutes each. 
The subject was asked to wear the instrumented chest-belt and 
drink water with a swallow instruction given once in every 20 
seconds. Each session resulted in approximately 80 Normal 
Breathing Cycle (NBC) and 15 breathing cycles with swallows 
(BC-ES and BC-IS). Data for all breathing cycles are 
wirelessly collected in a nearby notebook computer. A small 
microphone was also attached to the front part of the neck for 
recording the swallow sound. This audio signal, which was 
time-synchronized with swallow data extracted from the 
chest-belt, provided a control that was used for both training 
and verification of the proposed swallow detection 
mechanism. All subjects performed the above procedure.  
   The system performance is reported as ROC (Receiver 
Operating Characteristic) statistics of True Positive Rate vs. 
False Positive Rate. True Positive Rate is defined as the 
number of correctly detected BC-IS and BC-ES as a fraction of 
the total number of BC-IS and BC-ES. False Positive Rate is 
defined as the number of erroneously detected BC-IS and 
BC-ES as a fraction of the total number of NBCs.   

 
Fig. 4: Examples of BC modulation by adjacent swallows 

B. Breathing Cycle Modulation by Adjacent Swallows  

   It was experimentally observed that sometimes a swallow 
event in a breathing cycle can modulate the signal for 
immediately adjacent cycles. Such modulations are 
demonstrated in the example trace in Fig. 4. It was determined 
that most of the affected cycles before actual swallows were 
caused by a minor change of breathing in subconscious 
anticipation of an impending swallow. The affected cycles 
after actual swallows were caused due to a similar reason. The 
subjects also reported that sometimes they executed a very 
minor second swallow for drinking any remaining liquid in the 
throat region. It turned out that the matched filter based system 
is often able to detect the above modulation and reported such 
occurrences as two swallows in consecutive breathing cycles, 
thus contributing to the false positive rate. Given that such 
modulations by adjacent swallows are always involuntary, it is 
reasonable to filter them out. Considering that it is rare for 
people to have real swallows in consecutive cycles, we 
counted two swallows in consecutive breathing cycles as a 
single swallow event.   

VI. TEMPLATE WAVEFORM CONSTRUCTION 

A. Arbitrarily Chosen Templates 

   We evaluated the detection performance with arbitrary 

combinations of NBC, BC-IS and BC-ES waveforms as the 

reference inputs in Fig. 3. For each subject, 3500 different 

reference combinations of NBC, BC-IS and BC-ES 

waveforms are created from approximately 300 collected 

breathing cycle waveforms. Then, for each reference 

combination, each of the 300 breathing cycle waveforms is 

classified to be one of three types using the system in Fig. 3. 
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Finally, by comparing these detection results with the actual 

breathing cycle types (observed from the neck-attached 

microphone) for all 300 cycles a True Positive Rate and a 

False Positive Rate is computed. An ROC pair is then 

computed for each of the 3500 reference combinations. Fig. 5 

shows the ROC distribution of 3500 such pairs.  

 

    The cluster of high 

value columns in Fig. 5 

indicates that with 

arbitrarily chosen 

templates, majority of the 

combinations offer high 

true positive and low 

false positive Rates. 

However, the spread in 

the distribution indicate 

that there exist NBC, 

BC-IS, and BC-ES waveforms which, if chosen as templates, 

can result in poor performance. Therefore, random template 

selection is not practical.  

B. Existing Waveform Library 

In this method, matched filter references are constructed by 

sample-by-sample averaging of waveforms available from a 

pre-constructed breathing waveform library.  For a given 

subject, all normalized NBC waveforms from the library are 

averaged to construct the reference template for the NBC filter 

in Fig. 3.  Similarly, all normalized BC-IS and BC-ES 

waveforms in the library are averaged for the creating the 

templates for the BC-IS and BC-ES filters respectively.  
 

 True Positive Rate  False Positive Rate 

Subject 1 0.933 0 

Subject 2 0.933 0.089 

Subject 3 0.911 0.010 

Table 1: Performance with globally averaged templates  

   Table 1 summarizes detection performance with averaged 

template waveforms from an existing breathing waveform 

library, which is a prerequisite for this mechanism to work.  

C. Controlled Breathing Cycles 

Results in this section correspond to template waveforms 
that are computed based on the average of few known cycle 
types during a brief controlled phase. At the beginning of data 
collection, a subject is instructed to execute a fixed number of 
NBC, BC-IS, and BC-ES cycles. This provides the data for a 
set of few known cycles (i.e. controlled cycle) of each type. 
After the control phase, a sample-by-sample average NBC 
waveform is created from the recorded controlled cycles of 
type NBC. This averaged waveform is then used as the 
template for the NBC matched filter in Fig. 3. Templates for 
BC-IS, and BC-ES filters are similarly constructed using the 

controlled cycles of the respective types. Fig. 6 reports 
detection performance using three controlled cycles. To 
capture the effects of variability present in the controlled 
cycles, for each cycle type we arbitrarily choose three 
breathing cycles from a library of cycles and use them as the 
controlled cycles. We compute the true positive and false 
positive rate for each such combination of three controlled 
cycles of all three cycle types. Performance distribution (i.e. 
ROC) of 3500 such combinations is reported in Fig. 6.  

 
 

   Comparing with Fig. 5 it 
can be observed that the 
distribution of the overall 
performance is improved 
which is indicated by 
stronger clustering of the 
histogram columns near 0% 
false positive rate and 100% 
true positive rate. It should be 
noted in Fig. 6 that although 
the performance distribution using the controlled cycle 
mechanism contain few very good points (i.e. the columns 
near 0% false positive rate and 100% true positive rate), there 
are also few low-performing columns in those distributions. 
Those indicate that bad quality controlled cycles can bring 
down the system performance.  
 

 
Fig. 7: Algorithm for iterative template refinement 

VII. ITERATIVE TEMPLATE REFINEMENT 

In this section, we develop an iterative template refinement 
algorithm to address the above limitation. In this process, first, 
an NBC, a BC-IS, and a BC-ES waveform is chosen from the 
controlled cycles. Second, all collected breathing cycles are 
classified (see Fig. 3) using those three waveforms as the 
templates to the three matched filters. At this stage, each 
collected cycle is classified as NBC, BC-IS, or BC-ES. Third, 
all cycles that are classified as NBC are sorted based on their 
similarity scores obtained from the NBC matched filter in the 
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       If (��
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          �� is BC-IS; 

     } 

     Generate a new set of templates as: 

     TNBC  = average (detected NBCs with top 50% ��
�	
) 

     TBC-ES = average (detected BC-ESs with top 50% ��
	
�
�) 

     TBC-IS  = average (detected BC-ISs with top 50% ��
	
���) 

End 
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second step. Now, the top 50% of those NBC cycles are 
averaged to create the NBC template for the second iteration. 
The same process is also executed for BC-IS and BC-ES to 
form the templates for the second iteration. Seconds and third 
steps are then iteratively repeated till the true positive and false 
positive rates stabilize over consecutive iterations. The 
algorithm is summarized in Fig. 7. 

   The key 
concept here is 
that even when 
the initial 

template 
quality is not 
good, by 
choosing the 
top 50% of 
different types 
of the cycles, 
the algorithm 
should be able 
to iteratively 
refine the 

template 
quality, thus 
delivering good 

detection 
performance.  

Fig. 8 depicts the algorithm dynamics in the form of the 

similarity score space at the start and end (i.e. at performance 

stabilization) of template refinement.  The top graph shows the 

location of all the collected breathing cycles in the similarity 

score space obtained from the starting template waveforms. 

 
The graph has 247 points, corresponding to 247 total collected 

breathing cycles. The bottom graph corresponds to similarity 

score space obtained from the template waveforms when the 

algorithm stabilizes. Observe that the overlapping among the 

three types of breathing cycles is much less in the bottom 

graph compared to the top one. This indicates a clear 

improvement of the template quality, leading to improved 

separation of different classified cycle types. The tighter 

clustering of the points in the lower graph provides additional 

indication to better template quality compared to the starting 

set. The patterns in Fig. 8 have been consistently observed for 

a wide range of initial template combinations.  
   Fig. 9 shows the performance of iterative template 
refinement based swallow detection for three different 
subjects. The evolution of true and false positive performance 
for each subject are reported for three different starting 
template sets, termed as, Good Starting Point (GSP), Moderate 
Starting Point (MSP), and Poor Starting Point (PSP). Observe 
that the true positive rate for PSP consistently improve with 
iterations for all three subjects. For MSP, such rates either 
improve or remain constant with iterations. With GSP, true 
positive rates go down slightly, although the decrement is 
always observed to be less than the improvements observed 
for PSP, thus establishing the effectiveness of this iterative 
template refinement approach. With few exceptions, the false 
positive rates generally go down with iterations. Closer 
investigation to those exceptions revealed that the reasons 
were highly deformed initial template sets that contained 
BC-ES or BC-IS waveforms representing affected adjacent 
swallows explained in Fig. 4. 

VIII. CONCLUSION AND ONGOING WORK 

This paper reported the concept, design, and algorithms for 
a wearable swallow monitoring system. A matched filter based 
template matching framework was developed. A number of 
template design mechanisms, both static and iterative, were 
developed for swallow detection with high true positive and 
low false positive performance. Ongoing work on this topic 
includes: a) validating detection mechanisms for both solid 
and liquid swallows, b) analyzing swallow sequences and 
durations for characterizing food and drink intake, and c) 
analyzing the artifacts caused by normal movement and 
behavior. 
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