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Abstract— High-throughput analysis of gene expression data
is subject to technological and statistical issues that confuse the
underlying expression-condition associations. In this contribu-
tion a network-based candidate gene prioritization strategy was
applied to the enrichment of a publicly available gene expression
dataset, focused on the study of the mechanosensitivity of
genes exposed to altered pulmonary matrix stiffness. Results
suggested that some genes which had not been taken into
account in the original study could have an important role
in the processes causing, or affected by, pulmonary fibrosis.

I. INTRODUCTION

Gene expression microarrays measure the expression of
thousands of genes simultaneously, which allows conducting
hypothesis-free genome-wide studies of gene expression
changes under varying experimental conditions. However,
this lack of hypothesis causes that statistical tests are per-
formed on a number of variables that can be several orders
of magnitude higher than the sample size, causing that the
results have a very low statistical power and low repro-
ducibility [1]. Enriching gene expression data with other
sources of independent data is a commonly used approach
for prioritizing candidate genes, in an attempt to select
for further studies genes with different sources of positive
evidence [2]. In particular, protein-protein interaction (PPI)
data has been widely used for gene expression enrichment
[3]. Thus, network analysis has become a major topic in
genomic and proteomic studies.

PPI networks are represented by graphs in which nodes
represent proteins and edges represent binary protein inter-
actions. In the last decades a large number of PPI databases
have emerged. Figures 1 and 2 illustrate the wealth in PPI
data that are publicly available to the researchers.

In this contribution we demonstrate a candidate gene prior-
itization strategy based on network analysis of PPI-enriched
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Fig. 1: Interaction databases and interchange of information
among them. (Source: Klingström and Plewczynski 2011
[4]).

gene expression data. This methodology was applied to
the analysis of a publicly available gene expression dataset
[6]. That work was focused on finding genes that showed
differential expression under induced pulmonary fibrosis.

II. MATERIALS AND METHODS

The PPI data used was obtained from the Human Protein
Reference Database (HPRD) in its version of 07/06, 2009 [7].
The data was downloaded and converted to network structure
using the igraph R package [8].

The gene expression dataset used to demonstrate the
methodology was obtained from the Gene Expression Om-
nibus (GEO), dataset GSE22011 by Liu et al. 2010 [6]. The
focus of the work was to find mechanosensible genes that
showed differential expression under different pulmonary
tissue stiffness conditions. After performing a time-course-
like gene expression analysis they found that the COX-2
protein, encoded by the PTGS2 gene, was a very significant
gene that responded and contributed to changes in matrix
stiffness.

In this work, a time-course-like gene expression analysis
was performed, following the indications of Liu et al. 2010
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Fig. 2: A comparative analysis of different publicly available
databases. (Source: Mathivanan et. al 2006 [5], reproduced
with permission of the authors).

to obtain a set of candidate genes. Afterwards, a network-
based analysis was performed in two steps:

1) Construction of a local interaction environment.
This was done by calculating all shortest paths be-
tween all pairs of candidate genes. The interaction
environment of the candidate genes was obtained by
selecting only nodes and edges that belonged to any
of the shortest paths.

2) Prioritization of nodes according to different net-
work topology measures. Four different measures
were computed for each node in the local interac-
tion domain: degree, betweenness centrality, closeness
centrality and clustering coefficient. The degree of a
node (i.e. connectivity) is the number of edges that
incide on that node. Betweenness centrality measures
the centrality of a node regarding the number of times
it is in the shortest path between any other two nodes of
the graph. Closeness centrality measures the centrality
of a node regarding the average distance of that node to
any other node in the graph. The clustering coefficient
measures to what extend the neighbors of a node have
interactions among them, forming densely connected
modules.

TABLE I: Gene connectivity

Gene symbol Gene connectivity

TP53 21
ATXN1 12
PIK3R1 11
BMPR1B 11
CAV1 10
MATN2 10
S100A4 9
APP 9
BMP2 9
ACVR1 9
CDC42 9
TGFBR1 8
ABL1 8
SNAP25 8
TGFB1 8
IL7R 8
EP300 7
UBQLN4 7
HRAS 6
UNC119 6
BAT3 6
FYN 6
BRCA1 6
STAT3 6
PRKCA 5
TGFB2 5
CENPF 5

Top 25% of genes according to their connectivity. Genes belonging to the
set of candidates genes are shown in bold.

III. RESULTS

Figure 3 shows the network corresponding to the local
interaction environment of the set of candidate genes. It
was formed by 108 genes and 221 interactions, and had a
diameter of 7. Node connectivity ranged from 1 (ANLN) to
21 (TP53), and node betweenness centrality spanned from 0
(ANLN) to 1.33e3 (TP53).

Tables I and II show the 25% of genes with the highest val-
ues of connectivity and centrality, respectively. Surprisingly,
PTGS2, the gene encoding for protein COX-2, is ranked 89
(82%) in the degree-based prioritization, 64 (59%) in the
betweenness centrality-based prioritization, 25 (23%) in the
closeness centrality-based prioritization and 69 (64%) in the
clustering-based prioritization.

IV. DISCUSSION

The authors of the study from which the expression data
was retrieved stated that the PTGS2 gene, that encodes for
the cyclooxygenase 2 (COX-2) protein, was the most relevant
result of their study. However, the basis on which COX-2
was chosen before other more significant candidates remains
unclear. This fact illustrates the need for enrichment anal-
ysis, as, because of statistical limitations, the most relevant
genes are not always the most significant. In that case the
enrichment was probably performed based on a background
knowledge which suggested that COX-2 was the candidate
gene most likely to be related with the phenotype under
study.
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Fig. 3: The local interaction environment of the set of candidate genes. Candidate genes are labeled in red, whereas other
nodes in the network are labeled in blue. Node and label size are proportional to gene connectivity. Node background color
correlates with genes’ betweenness centrality. It goes from white, for genes with low centrality, to black, for genes with
high centrality.

Our automatic enrichment suggested a new candidate gene
prioritization, based solely on topological properties of the
resulting protein interaction network. Our results suggested
that both TP53, CAV1 and PIK3R1 are very important genes
in the biological processes related to the phenotype.

The TP53 gene encodes for the tumour protein 53, a
vital protein that has a key role in regulating the cell cycle,
preventing genome mutation and, thus, acting as a tumour
suppressor protein. Defects in TP53 have been related to a
variety of tumours and cancers, including lung cancer. In
fact, more than 50% of human tumours contain mutations or
deletions on TP53 [9].

CAV1 is the gene that encodes for caveolin-1. This protein
is necessary for the formation of caveolae, which are regions
of the cellular membrane that are responsible for a wide
range of vital cellular processes like signal transduction,
vesicular trafficking and tumour suppression [10]. The CAV1
gene is located in the chromosome 7, near a microsatellite
that has been related to a variety of epithelial-based tumours,
like breast cancer. CAV1 has a “natural” variant that is
present in 16% of lung cancers. In addition, CAV1 seems

to enhance cellular survival by the positive regulation of the
PI3K/Akt signaling pathway, which could favour cell prolif-
eration in abnormal cancer cells [11]. Expression of caveolin-
1 seems to be directly correlated with cellular motility, which
could explain that tumours with high expression of caveolin
are more aggressive and present a higher rate of metastasis.

The PIK3R1 gene encodes for a regulatory protein that
is involved in a wide variety of cellular processes and
it has a central role in the PI3K/Akt signaling pathway,
which is related to cellular proliferation, cellular motility
and intracellular traffic, which are related to cancer. CAV1
positively regulates the PI3K/Akt signaling pathway, which
could be the cause of the observed correlation between CAV1
and cell motility.

However, none of the genes described above was signif-
icant in the statistical test performed by Liu et al. 2010.
Their good performance in the network topology-based pri-
oritization could be a consequence of their importance in
highly studied processes, which could introduce a bias in
connectivity and, therefore, in topological measures [12]. The
fact that all three genes have been related to cancer should
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TABLE II: Gene betweenness centrality

Gene symbol Betweenness centrality

TP53 1.33e+03
S100A4 7.16e+02
CAV1 6.19e+02
PIK3R1 5.47e+02
ATXN1 4.67e+02
APP 4.54e+02
SNAP25 4.35e+02
BMP2 4.32e+02
ABL1 4.31e+02
UBQLN4 4.16e+02
CDC42 3.66e+02
MATN2 3.65e+02
BMPR1B 3.64e+02
TGFB1 3.24e+02
BAT3 3.17e+02
FYN 3.11e+02
PRKCA 2.90e+02
IL7R 2.81e+02
TGFBR1 2.61e+02
ACVR1 2.58e+02
UNC119 2.48e+02
EP300 2.32e+02
SEPT7 2.16e+02
NOV 1.50e+02
HRAS 1.48e+02
CENPF 1.45e+02
FN1 1.34e+02

Top 25% of genes according to their betweenness centrality. Genes
belonging to the set of candidates genes are shown in bold.

not be a surprise, since there seems to exist an increased risk
of lung cancer for pulmonary fibrosis patients [13].

Two genes scored high in our network-based analysis,
that had also scored high in the study by Liu et al. 2010:
BMP2 and MATN2. The BMP2 gene encodes for the bone
morphogenetic protein 2, which is a secreted protein found in
lung tissues. It plays a fundamental role in bone and cartilage
formation and is involved in the TGF-β signaling pathway,
which is known to be altered by changes in matrix stiffness
[6]. Furthermore, this protein seems to have an important role
in the epithelial to mesenchymal transition (EMT), which
could favour the metastatic behaviour of cancer cells. Defects
in the receptor associated to BMP2 are the cause of several
cancers, including breast and endometrial cancer. The protein
encoded by the MATN2 gene is also a secreted protein
that is hypothesized to have a role in the formation of
the extracellular matrix filaments and could, therefore, be
responsible of, or sensible to, changes in the matrix stiffness.

In conclusion, the proposed automatic, network-based
prioritization strategy yielded potential candidates, that could
have a role in the processes involving changes in matrix stiff-
ness. The real causes of such changes still remain unknown,
as unknown remain most of the mechanosensible genes
that alter their expression because of the perceived change
in extracellular stiffness. The reason why some idiopathic
pulmonary fibrosis (IPF) patients develop lung cancer and
other do not is probably closely related to the alteration
of such mechanosensible genes. Elucidation of the cellular
processes that lead to abnormal stiffness and/or discovery

of the genes that change their expression under different
stiffness conditions leading to lung cancer could be a major
step towards the full understanding of the disease.
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