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Abstract— Learning from imbalanced data sets presents an
important challenge to the machine learning community. Tra-
ditional classification methods, seeking to minimize the overall
error rate of the whole training set, do not perform well
on imbalanced data since they assume a relatively balanced
class distribution and put too much strength on the majority
class. This is a common scenario when predicting sub-cellular
locations of proteins since proteins belonging to certain specific
locations are naturally more abundant or have been more
extensively studied. In this work, a new method to learn from
imbalanced data, called SwarmBoost, is proposed in order
to reduce overlapping and noise of imbalanced datasets and
improve prediction performances. The method combines over-
sampling, subsampling based on particle swarm optimization
and ensemble methods. Our results show that SwarmBoost
equals and in several cases outperforms other common boosting
algorithms like DataBoost-Im and AdaBoost, constituting a
useful tool for improving sub-cellular location predictions.

I. INTRODUCTION

The latest advances in science and technology have ge-
nerated an exponential growth of information, leading to
a great evolution in the field of engineering data analysis
focused on large-scale data. The above phenomenon has
been present in fields such as proteomics and molecular bio-
logy, including the identification and functional annotation
of novel proteins. The sub-cellular localization of proteins
can provide useful information on how proteins interact
with each other and with other molecules, thus providing
important clues to reveal their functionality [1]–[3]. Although
this type of information can be acquired by conducting
various biochemical experiments, it is usually very time
consuming and practically cumbersome. For that reason, it
is highly desirable to develop computational methods for
identifying sub-cellular localizations of novel proteins [3].
However, proteins with certain specific locations are more
abundant, creating a high degree of disparity in the number
of samples belonging to each class [4] and, since machine-
learning classifiers with unbalanced data usually generate
larger bias [5], [6], proteins of interest get misclassified and
prediction performances are low.

The fundamental issue with the imbalanced learning pro-
blem is the the property of imbalanced data to significantly
compromise the performance of most standard learning algo-
rithms. Such algorithms assume or expect balanced class dis-
tributions or equal misclassification costs. Therefore, when
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presented with complex imbalanced data sets, they fail to
properly represent the distributive characteristics of the data
and resultantly provide unfavorable accuracies [7].

To solve this bottleneck several strategies have been pro-
posed, most of them focused on under-sampling examples of
the majority class [8], over-sampling examples of the mino-
rity class [9], combined under-sampling and over-sampling
[10] or weighting examples to bias the learning towards the
minority class [9]. Lately, ensembles have emerged as a pro-
mising technique with the ability to improve the performance
of weak classification algorithms [11], [12]. Ensembles of
classifiers consist of a set of individually trained classifiers
whose predictions are combined to classify new instances. In
particular, boosting is an ensemble method where the perfor-
mance of weak classifiers is improved by focusing on hard
examples which are difficult to classify. Boosting produces
a series of classifiers and the outputs of these classifiers
are combined using weighted voting in the final prediction
of the model [13], [14]. Recent studies have indicated that
boosting algorithms are applicable to a broad spectrum of
problems with great success [13], [15]. However, there are
also some drawbacks for boosting methods: they can fail to
perform well if there is not enough training data [16] or
if the training data contains too much noise [17]. With the
aim of solving this problem, combined techniques that merge
Oversampling and Boosting strategies like DataBoost-IM
[14] have been proposed. However, the use of Oversampling
techniques in Boosting does not guarantee a better training
subset to induce a better generalization capability, mainly
because most oversampling techniques tend to produce over
generalization and add computational complexity [18].

In this paper, a new method that combines oversampling,
particle swarm optimization subsampling and Boosting is
presented. The aim of this method is to improve the pre-
dictive accuracies of both the majority and minority classes,
by using a selective sampling criterion that chooses the
most representative samples of the training dataset and thus
represents more efficiently the probabilistic distribution of
the data. The approach was tested in sub-cellular location
prediction of Yeast and E. Coli proteins. The results show im-
proved prediction performances compared with standard and
advanced boosting techniques like AdaBoost and DataBoost-
IM for such datasets.

II. MATERIALS AND METHODS

II-A. DataBoost-IM

DataBoost-IM is a reinforcement methodology designed
to manage unbalanced datasets [14]. It combines data ge-
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neration and boosting procedures to improve the predictive
accuracies of simple classifiers over both the majority and
minority classes. Starting with a weak classifier and set of
m examples, each one of them associated to a weight wi,
w = 1, 2, . . . ,m, DataBoost-IM first initializes all wi = 1/m
and then performs an iterative process comprised of the
following steps:

1. Obtain the training error of the weak classifier to iden-
tify hard examples of the training dataset and sort the
examples in descending order, based on their weights.
Such examples will serve as seeds for generating the
new data.

2. Generate synthetic examples according to the probabi-
lity distribution of hard examples from both minority
and majority classes.

3. Compute the weights associated to the new examples
by dividing the actual weigth of their seed example by
the number of instances generated from it.

4. Add the synthetic examples to the real ones and
rebalance the weights of the whole data set searching
that the sum of weights in the majority class equals
the sum of weights in the minority class.

5. Re-train the weak classifier using the new weights.
The algorithm ends after a predefined number of iterations

and provides a set of classifiers that are able to make better
predictions than each weak classifier alone. To obtain more
detailed information about DataBoost-IM, see [14].

II-B. Particle Swarm Optimization
The Particle Swarm Optimization (PSO) algorithm is a

population based optimization tool where the system is
initialized with a set of random solutions, seeking for an
optimal subset of the population satisfying some performance
index over generations. Given a set of m potential solutions
pi ∈ Rn, i = 1, 2, . . . ,m, called particles, and a fitness
scalar function f(pi) = qi, PSO assigns a randomized
velocity vi ∈ Rn so that particles are then “flown” through
the problem space. At each time step, the particles move
depending on their fitness function values. Each particle
keeps track of its own best position, which is associated
with the best fitness it has achieved at that time in a vector
pi ∈ Rn. Furthermore, the best obtained positions among
all the particles in the population is included in the vector
pg ∈ Rn. A new velocity for the i-th particle is updated at
each time step t by equation (1).

vi(t+ 1) = αvi(t) + c1φ1(bi(t)− pi(t)) . . . (1)
+ c2φ2(bg(t)− xi(t))

where c1 and c2 are positive constants, φ1 and φ2 are
uniformly distributed random numbers and α is the inertia
weight. Changing velocity in this way enables the particle
i to search around its individual (bi), and global (bg)
best position. Based on the updated velocities, each particle
changes its position according to equation (2).

pi(t+ 1) = pi(t) + vi(t+ 1) (2)

II-B.1. Separability criterion based on scatter matrices:
Metrics based on separability estimate the overlap between
the distributions from which the data are drawn, and favour
those sample sets for which this overlap is minimal (i.e.,
maximizing the separability). A measure of the average
separation separation between two data sets, ω1 and ω2 can
be defined as:

Jas(ωi, ωj) =
1

n1n2

m1∑
i=1

m2∑
j=1

d(xi,yj) (3)

where ω1 = {x1,x2, . . . ,xm1}, ω2 = {y1,y2, . . . ,ym2},
xi,yj ∈ Rn. The average distance between classes measured
in probabilistic distances is represented in the following
equation:

J(ωi, ωj) =
1

2

C∑
i=1

P (ωi)

C∑
j=1

P (ωj)Jas(ωi, ωj) (4)

where P (ωi) is the prior probability of class ωi (estimated
as Pi=ni/n, being n,C ∈ N the total sample number in all
dataset and C the number of classes presents in the dataset).
This separability criterion is independent of the learning
process used by the classifier employed and can be computed
from the between−class (Sb) and within−class (Sw) scatter
matrices respectively defined in equations 5 and 6.

Sb =

C∑
i=1

ni
n

(mi −m)(mi −m)T (5)

Sw =

C∑
i=1

ni
n

Σ̂i (6)

Where Σ̂i is the covariance matrix of the i − th class, mi

the sample mean of the i− th class and m the sample mean
of the whole dataset. This way, J can be rewritten as:

J(ωi, ωj) = Tr {Sw + Sb} = Tr {Σ} (7)

This criterion is simply the total variance, which does not
depend on class information. It also reduces the level of
dispersion within the classes.

III. PROPOSED METHODOLOGY: SWARMBOOST

Although the resampling procedure implemented in
DataBoost-IM improves the representative set to induce the
model over imbalanced data, the use of oversampling stra-
tegies does not always can guarantee a good generalization
capability, specially if it is used on ensemble of classifiers
structured in the Boosting scheme. This may be caused by
possible noise, rare samples in the resampling process and
increased the ocurrence of overlapping between classes in
the balance process [7], [19].

To overcome these problems, Swarmboost performs a
subsampling stage before training the weak classifier in
each iteration, reducing noise and redundant examples and
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thus helping to mitigate the overlapping generated in over-
sampling stage [20], [21]. With removed samples, it is
possible establish well-defined class clusters in the training
set, which can, in turn, lead to well defined classification
rules for improved classification performance [7]. In order
to minimize the loss of useful information, a subsampling
strategy based on PSO is employed [20]. The evaluation
function for the metaheuristic is based on filter metrics in
order to reduce the computational cost while preserving
similar or superior performances compared with Wrapper
metrics [22]. The evaluation function used in SwarmBoost
attempts to find the maximun interclass separability between
the minority and majority classes Algorithm 1 shows the
complete methodology of SwarmBoost.

Algorithm 1: SwarmBoost
Require: Labeled examples 〈(x1, y1), ..., (xm, ym)〉
Require: Weak learning algorithm WeakLearn
Require: Number of iterations T

1: Initialize distribution Dt(i) = 1/m
2: for t = 1, 2, ..., T do
3: Identify hard examples from the original data set for

different classes.
4: Generate synthetic data to balance the training

knowledge of different classes.
5: Add synthetic data to the original training set to

form a new training data set.
6: Update and balance the total weights of the different

classes in the new training data set.
7: Resample the new training dataset based on PSO

subsampling.
8: Call WeakLearn, providing it with the new training

set.
9: Get back a hypothesis ht : X → Y .

10: Calculate the training error
ht : εt =

∑
i:ht(xi) 6=yi

Dt(i).
11: Set βt = εt/(1− εt).
12: Update the distribution for the new training set

Dt+1(i) = Dt(i)
Zt
×
{
βt if ht(xi) = yi
1 if otherwise where

Zt is a normalization constant.
13: end for
14: return hfin(x) = argmax

y∈Y

∑
t:ht(y)=y log(1/βt)

Note that a detailed description of the data generation
process used in DataBoost-IM (step 3 until step 6) falls
beyond the scope of this paper. Interested readers are referred
to [14] for a description of this process and its evolution.

IV. EXPERIMENTAL SETUP

IV-A. Databases

To evaluate the performance of the algorithms, two protein
sub-cellular localization benchmark datasets were used. Such
datasets correspond to Yeast and E. Coli and were extracted
from UCI machine learning repository [23]. The multi-class

problems were divided into multiple bi-class problems and
classes with less than 20 samples were discarded because
they had not enough data to induce a reliable model. Table
I summarizes the characteristics of the data sets.

TABLE I
DATA SETS INFORMATION

Class Minority class instances Features Imbalance ratio
Yeast - CYT 463 8 1:2.20
Yeast - EXC 37 8 1:39.1
Yeast - MIT 244 8 1:5.1
Yeast - ME2 51 8 1:28.1
Yeast - ME3 163 8 1:8.11
Yeast - NUC 429 8 1:2.46
Ecoli - cp 143 8 1:1.34
Ecoli - im 77 8 1:3.36
Ecoli - imU 35 8 1:8.6
Ecoli - om 20 8 1:15.8
Ecoli - pp 52 8 1:5.46

IV-B. Class imbalance and classification schemes

To obtain a predictive model for all datasets, a decision
tree C4.5 classifier was chosen. The proposed methodology
was compared with AdaBoost and DataBoost-IM, all of them
with three iterations. As objective function for the PSO-
subsampling stage used on SwarmBoost, it was used the total
variance filter (J1) described in [22] with 10 iterations of the
PSO algorithm.

V. RESULTS AND DISCUSSION

Table II shows the results obtained by each method with
a 10−fold cross-validation scheme. Given the high class
imbalance, it is misleading to employ simple classification
accuracy as performance measure. So, a more balanced
measure, the square root of the product between sensitivity
and specificity (geometric mean), is used instead. In all cases
the experiments comprised three iterations of the boosting
schemes excepting when explicitly marked.

TABLE II
PERFORMANCE WITH THREE BOOSTING SCHEMES ON ALL DATASETS

.
Datasets SWARMBOOST DATABOOST-IM ADABOOST
Yeast-CYT 62,83 62,81 30,26 1

Yeast-EXC 83,49 78,54 55,95 2

Yeast-ME2 83,44 76,13 53,54 2

Yeast-ME3 89,32 87,12 89,34
Yeast-NUC 64,98 67,32 67,76
Yeast-MIT 75,13 73,09 70,78
Ecoli-cp 95,20 95,39 94,49
Ecoli-im 87,24 84,17 88,35
Ecoli-imU 87,68 78,44 86,86
Ecoli-om 93,34 88,59 70,25
Ecoli-pp 89,18 88,51 83,42

1after 50 iterations
2after 8 iterationsIt can be seen that the datasets with most similar perfor-
mances across the three methods were Ecoli-cp, Yeast-ME3,
and Yeast-NUC, and it is noticeable that these datasets have
some of the lowest imbalance ratios (excepting Yeast-NUC).
On the other hand, for datasets with the highest imbalace
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Fig. 1. Performance of the three boosting schemes on all datasets

ratios: Yeast-Exc, Yeast-ME2 and Ecoli-om, SwarmBoost
clearly shown better performances than the other two met-
hods. This phenomenon may be due to the increased noisy
samples generated by oversampling (DataBoost-IM) within
the training set used in Boosting techniques, which in turn
increases the complexity of the training data set and can
lead to a loss of generalization capabilities. In the case of
AdaBoost, three iterations were insufficient to obtain geo-
metric means superior to zero (the majority class completely
dominated the minority class) for the datasets CYT, EXC and
ME2. The algorithm responded after 50, 8, and 8 iterations
respectively.

In general terms, AdaBoost showed the worst results,
presumably due to the absence of representative samples in
minority class to induce the learning model. SwarmBoost,
presented the best performances in seven out of eleven
datasets, being very close to the best method in the remaining
four. This fact suggests a better generalization capability and
therefore superiority among the tested algorithms. Figure 1
depicts the results in a graphic way.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new tool for improving protein sub-cellular
prediction, SwarmBoost, was proposed. The main purpose
of the method was to create a boosting scheme to manage
unbalanced data by combining the advantages of oversam-
pling to have more information (DataBoost) with a better
representation achieved by subsampling, thus inducing a
model with better generalization abilities. Results show that
SwarmBoost performs better than other Boosting schemes as
the class imbalance ratio increases. It should be taken into
account that the performance of SwarmBoost will depend
on the fitness function used as subsampling criterion. As
future work, it would be desirable to test SwarmBoost with
some different criteria such as other filter or wrapper metrics
that could provide more information about the distribution of
classes. Also it will be useful to apply this methodology in
a multiclass scenario.
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