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Abstract— A novel method for approximate string matching
with applications to bioinformatics is presented in this paper.
Unlike most methods in the literature, the proposed method
does not depend on the computation of the edit distance between
two sequences, but uses instead a similarity index obtained by
applying the phase correlation method. The resulting algorithm
provides a finer control over the false positive rate, allowing
users to pick out relevant matchings in less time, and can be
applied for both offline and online processing.

I. INTRODUCTION

Approximate string matching (ASM) is the problem of
finding one or more instances of a pattern string a1a2 . . . am
within a longer sequence b1b2 . . . bn, where each instance
may differ from the pattern string in a way that may be
quantified by an adequate metric. The most typical metrics
are the Hamming distance, which indicates the number of
mismatched symbols between two sequences of the same
length, i.e., the number of symbol substitutions required to
transform one sequence into the other, and the Levenshtein
distance (also called edit distance) which measures the num-
ber of edit operations (insertions, deletions, and substitutions)
required to transform one string into another, not necessarily
of the same length.

ASM has a wide number of applications, including
database searching, spelling correction, plagiarism detection,
and bioinformatics [1], [2]. In many of these applications,
algorithms are required to search one or more patterns within
very large databases; this has led to the development of
very efficient ASM algorithms, some of which perform in
linear or even sub-linear time; i.e., the number of operations
performed is, in the worst case, proportional to the size of
the search space n [3], [4]. For a good review of the most
relevant ASM methods and their applications, see [5], [6],
[7], [8], and [9].

One major drawback of most of these methods is that
they produce a significant amount of false positives; that is,
approximate instances of the pattern string that are observed
by chance, but are of no relevance for the particular appli-
cation under development. In large databases, it is common
to observe from ten thousand to a hundred million of false
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positives, depending on the length of the pattern string
[10]. For many of these methods, the only parameter is
the maximum distance k (e.g., Hamming or Levenshtein)
allowed between the pattern string and a reported instance
within the search sequence. If k is too small, there is the risk
that a relevant instance will be missed (false negative), and
if k is too large, a large number of false positives will be
reported. Depending on the application, it is often preferable
to reduce the number of false negatives (type II error) even
at the cost of many false positives, but then it is up to the
user to cull the results and discard those instances that are
of no relevance. This is often more time consuming than the
search process itself, and may be one of the main reasons
why developers do not always bother using state-of-the-art
ASM algorithms.

The aim of this work is to present an algorithm for
approximate string matching which is not based on either
the Hamming or the Levenshtein distance, but provides finer
control over the amount of false positives (type I error). The
proposed method is based on estimating a similarity index at
each position in the search string, based on the phase-only
correlation (POC) function.

This paper is organized as follows: first, the classic phase
correlation method is presented. Then, the proposed method-
ology is explained, followed by some preliminary results
(with both synthetic sequences and real protein sequences)
and the corresponding discussion. Finally, the conclusions
are drawn.

II. PHASE CORRELATION METHOD

The phase correlation method is a widely used signal
and image aligning technique with applications in image
registration [11], stereo vision [12], motion estimation [13],
and video encoding [14]. This technique has its foun-
dations in the shift properties of the Fourier transform.
Consider a discrete-time signal f(x) and a shifted ver-
sion g(x) = f(x − d), and suppose we are interested in
finding the unknown displacement d. In the classic phase
correlation method, one computes the normalized cross-
spectrum R(ω) = F (ω)G∗(ω)/|F (ω)G∗(ω)| where F and
G are the Fourier transforms of f and g, respectively, and
G∗ represents the complex conjugate of G. The inverse
Fourier transform r(x) of R(ω) is known as the phase-
only correlation (POC) function. Note that, if g is truly a
shifted version of f , then G(ω) = F (ω) exp{−j2πωd};
therefore, R(ω) = exp{j2πωd} and r(x) = δ(x+d), where
δ represents the Dirac impulse function. This suggests that,
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in practice, one can determine d by locating the maximum
of the POC function r(x).

When g(x) is not a shifted version of f(x), but instead
contains various segments of f(x), each of them shifted by a
different amount, it can be shown that the POC function can
be modeled as the sum of distorted and displaced delta func-
tions, each of which is centered at a position corresponding to
one of the displacement values [15]. In other words, if g(x)
contains various displaced versions of f(x), it is possible, to
some extent, to estimate those displacements by computing
the maxima of the POC function.

Another way to see this is to consider that the POC
function r(x) gives an estimate of the likelihood that an
instance of f is located in g beginning at position x.

III. PROPOSED METHODOLOGY

In order to apply the phase correlation method to discrete
data, such as sequences of symbols taken from a finite
alphabet A, it is necessary to transform the data into a series
of numbers (i.e., a discrete-time signal). One way to do this
is by means of a mapping function ϕ : A → R, which we
call codebook. One well-known example of a codebook is the
ASCII code. The transformation of a sequence a1a2 . . . am
into a signal f(x) is straightforward, given simply by f(x) =
ϕ(ax), x = 1, . . . ,m. It is important, however, to use
the same codebook to encode both the pattern string and
the search sequence, resulting in signals f(x) and g(x),
respectively. Once these signals are obtained, it is possible
to estimate the POC function using the classic method as
shown in the previous section.

Note that it is possible to design a codebook so that spe-
cific symbols are considered equivalent (by assigning them
similar codes) or by penalizing specific symbol substitutions
(by assigning those symbols values which are far apart in
the codebook). A generic algorithm, however, should not
attempt to favor or penalize any specific substitutions; thus,
it is a good idea to compute the average POC over different
(arbitrarily chosen) codebooks.

In most database searching applications, the search se-
quence is typically much longer than the pattern string.
Instead of computing the Fourier transform of such long
sequences, we suggest to divide the search string in over-
lapping segments whose length is a power of two (so that
efficient FFT implementations can be used). The length w
of these segments must be greater than the length m of the
pattern string, for example, w = 2q where q = ⌈log2 m⌉.
The overlapping between segments should be at least of m
symbols, in order to avoid missing instances which may lie
near the limits of a segment.

With these things in mind, we propose an algorithm which
takes as inputs the pattern string a1a2 . . . am, the search
sequence b1b2 . . . bn, the segment length w ≥ m, and a set of
C codebooks Φ = {ϕ1, . . . , ϕC}. The output of the algorithm
is a similarity index Ik for each k = 1, . . . , n indicating the
likelihood of observing an approximate copy of the pattern
string at position k of the search sequence. The algorithm is
as follows:

1) Initialize Ik = 0 for k = 1, . . . , n.
2) Let N = ⌈ n−w

w−m + 1⌉ be the number of segments into
which the search sequence will be split.

3) Let ∆ = n−w
N−1 be the distance between the initial

position of consecutive segments.
4) For each codebook ϕ ∈ Φ do the following iteration:

a) Let f(x) = ϕ(ax) for x = 0, . . . ,m − 1 and
f(x) = 0 otherwise.

b) For each segment j = 0, . . . , N − 1 do
i) Let g(x) = ϕ(b⌊j∆⌋+x), for x = 0, . . . , w−1.

ii) Compute the POC function r(x) between
f(x) and g(x).

iii) Let I⌊j∆⌋+x = I⌊j∆⌋+x + r(x)/C for x =
0, . . . , w − 1.

Figure 1 shows an example of the matching indices found
in a text string when searching for the pattern ing. Note
that the algorithm can be parallelized in various ways;
for example, by distributing the segments across different
threads, or by dedicating one core to each codebook. Such
implementations, however, are beyond the scope of this
article. Also, the algorithm can be easily modified (by
changing the order of the two main loops) to process large
search sequences online with minimal memory requirements.
Finally, when searching more than one pattern, one can store
the FFTs of the search sequence segments in order to save
time.

Once the matching indices have been computed, we have
to select those that may represent relevant instances of the
pattern string. To do this, we define a matching threshold
τ = µ+Tσ, where µ and σ represent the mean and standard
deviation of the matching indices I0, . . . , In−1, and T is a
parameter provided by the user; reasonable values for T
range between 2 and 4. The algorithm reports a matching
instance at position x if Ix > τ . If desired, one could then
estimate an edit distance for each match as a complementary
selection criterion.

Higher values of T will reduce the number of false
positives at the possible expense of an increased number of
false negatives; however, unlike the (integer) edit distance
threshold used in most algorithms, T is a real number
which can be finely tuned. Moreover, one can try different
thresholds without having to recompute the matching indices,
allowing the process of culling false positives to be semi-
automated.

A quick analysis of the algorithm will show that it requires
to compute approximately 3CN FFTs of size w, each of
which has a time complexity of O(w logw). Since w is
related more or less linearly to the pattern length m, and
wN is proportional to the length n of the search sequence,
then the execution time of the proposed algorithm is of order
O(Cn logm), or simply O(n logm) if C is fixed.

IV. RESULTS AND DISCUSSION

A simple (non-parallel) implementation of the proposed
method was written in GNU C for the MinGW compiler.
For increased efficiency, FFTs were implemented using the
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Fig. 1. Example of matching indices assigned to each position in a search sequence. The number of ’X’ symbols below each position indicate the degree
of similarity between the substring starting at that position and the pattern string. The pattern string being searched in this case is ’ing’.

FFTW library [16]. All tests were performed in an Intel 2.4
GHz Core2Duo CPU (although the algorithm runs in a single
core) with 4 Gb of RAM and Windows Vista as the operating
system.

In order to evaluate the efficiency of the proposed method,
a series of test cases was randomly generated with the
following parameters: pattern string length of m = 32,
search sequence length of n = 220 (1 Gb), alphabet
size of 32 symbols, and segment/FFT size w = 64. The
search sequence contains 256 non-overlapping approximate
instances of the pattern string with known positions. The
approximate instances are obtained by applying k edit oper-
ations (insertions, deletions, and substitutions) to the pattern
string. For each of the 256 known positions where the
true instances were placed, we count a true positive if the
position coincides with one of the candidates reported by
the proposed algorithm with a difference of at most k. This
is because insertion and deletion operations may affect the
relative positions of the true instances and the ones found
by our method. If a reported candidate does not lie within k
symbols of one of the true known positions, it is counted as
a false positive. Note, however, that it is possible to observe
many contiguous false positives which may correspond to
the same spurious instance, so the false positive rate is, in
fact, overestimated in our evaluation.

Tests were performed for three different cases, correspond-
ing to k = 3, 5, 10; an increased number of false positives
and false negatives is expected for larger k-values, due to the
alterations applied to the different instances of the pattern
string. For each value of k, 100 test cases (consisting of a
pattern string and a search sequence) were generated and the
average true positive and false positive rates were estimated,
as well as the average computation time. The number of
codebooks or iterations C used to estimate the average POC
function was also varied from 1 to 16 in order to analyze
its effect on the performance; each codebook is obtained
as a random permutation of the ASCII encoding, i.e., each
symbol is assigned a random but unique code between 0 and
127. For each test case, the optimal value of the matching
threshold Topt is found by performing a brute force search
to minimize the following criteria:

Topt = arg min
T∈T

{FP + λFN} , (1)

where T = {0, 0.5, . . . , 10} defines the range of test values
for the threshold T , FP and FN represent the number of
false positives and false negatives, respectively, obtained with
a given value of T , and λ is a penalization factor for false

Fig. 2. Evaluation of the proposed method with a set of synthetic cases
(see text for details) with different levels of difficulty given by the number
of edit operations (k = 3, 5, 10): (a) Optimal threshold (which minimizes
the FPR while maintaining the TPR close to 100%), (b) True Positive Rate,
(c) False Positive Rate, (d) Computaton time.

negatives. Since we are interested in minimizing the Type II
error, a large value of λ = 212 (the ratio between n and the
number of true instances) was chosen.

Figures 2(a)-(c) show the average optimal threshold Topt,
true positive rate (TPR), and false positive rate (FPR),
respectively, for k = 3, 5, 10 and C = 1, . . . , 16. Note
that the optimal threshold can be increased more or less
linearly with respect of the number of iterations performed
by the algorithm: this suggests that, with each iteration, the
similarity index corresponding to true instances is reinforced.
Also, the TPR quickly becomes close to 100% after the first 3
or 4 iterations, while the FPR decreases monotonically after
the second iteration. Figure 2(d) shows the computation time,
which does not depend on k, and clearly increases linearly
with respect to the number of iterations/codebooks.

One more test was performed with three real plant protein
sequences: Opuntia strepthacanta OpsDHN1 SK3-type DHN
(GenBank accession no. HO058650), Arabidopsis thaliana
K6-type DHN (GenBank accession no. AEE78733), and A.
lyrata Y3SK2-type DHN (Phytozome accession no. 496967)
[17], [18]. Dehydrins (DHN) are a family of intrinsically
unstructured plant proteins that belong to the group 2 LEA
proteins. These proteins are characterized by the presence
of one or more K-segments (conserved lysine-rich con-
sensus regions) that consist of 15 amino acid residues
[EKKGIM(E/D)KIKEKLPG], which form a putative amphi-
pathic α-helix [19], [20]. DHN proteins may also contain
S-segments [LHRSGS4−10(E/D)3] formed by a stretch of
4-10 serine residues and Y-segments [(V/T) D(E/Q)YGNP]
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Fig. 3. Results with real protein sequences (see text for details). For each
sequence, we searched for three motifs which are characteristic of S-, K-,
and Y-segments, respectively. The proposed method was able to detect all
the known segments with only one false positive in the OpsDhn1 sequence,
shown inside a rectangle.

that are located near the N-terminus, [19], [20]. In general,
DHN proteins share low sequence identities, and the proper
identification of conserved motifs is an important task for the
classification of these proteins into DHN sub-types: YnSK2,
Kn, SKn, KnS, and Y2Kn.

In each of the selected protein sequences, we searched
for the following amino acids in the motifs: EKKGIMD-
KIKEKLPG (K-segment), LHRSGS (S-segment), and
DEYGNP (Y-segment). We started with a high threshold
value T = 4.0 and decreased it until the known segments
were detected. In the case of the S- and Y-segments, the
default value of T = 4.0 produced the desired results. For the
K-segments, the threshold had to be decreased until T = 2.3
to allow larger deviations from the pattern string. In all
cases 16 iterations were performed and the total computation
time (for a total of nine searches) was 15 milliseconds. The
results are shown in Fig. 3. Only one false positive was
found, corresponding to the OpsDHN1 sequence. However,
this instance can be easily discarded in a postprocessing stage
given that its length (5 symbols) is much shorter than the
expected length of the motif (15 symbols).

V. CONCLUSIONS

An novel technique for approximate string matching was
presented. The main difference with respect to existing
methods is that our algorithm does not attempt to compute an
edit distance, such as the Hamming or Levenshtein metrics.
Instead, we estimate a similarity index at each position in
the search sequence which represents the likelihood of an
instance of the pattern string beginning at that position.

This index is obtained as the average phase-only correla-
tion computed across various encodings of both sequences.
Preliminary tests demonstrate the viability of the proposed
method, and its applicability to bioinformatics. The main
advantages of this method are (1) a finer control over the
false positive rate that does not require recomputation of
the similarity index, (2) the possibility of parallelization in
various levels, and (3) the ability to include other metrics as
complementary matching criteria. Future work will focus on
the design of adequate codebooks for specific applications,
and the parallelization of the algorithm for multiple searches.
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