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Abstract— We developed a practical laparoscopic surgical
simulator using co-rotated FEM in a linear scheme. This was
somewhat of a compromise due to a strong constraint on real-
time processing. The spread of surgical simulators and medical
simulations for clinical medicine in the near future will impose
important demands that cannot be met with this linear scheme.
For example, subtle force sensing by forceps used for peeling
connective tissues and moving blood vessels is very important
for a preoperative surgical simulator, as is precisely predicting
the deformation of organs with patient posture during surgery
for torocar simulation and surgical navigation. We evaluated
several models such as co-rotated FEM, nonlinear FEM, and
the hyperelastic model for these advanced real-time medical
applications. As a result, we confirmed that the hyperelastic
model is the most suitable for the anticipated surgical simulator,
and that the co-rotated FEM and nonlinear FEM score almost
the same in both processing time and accuracy. In addition,
implementation of the hyperelastic model in real time seems
possible with current off-the-shelf PCs.

I. INTRODUCTION

We developed a laparoscopic surgical simulator using im-
proved co-rotated FEM based on a linear FEM scheme[7][8]
that compensates for stress caused by rigid rotation. This is a
compromise based on time-critical constraint. In response to
the rapidly expanding use of surgical simulation and surgical
navigation in clinical applications in the near future, there
will be important functions that cannot be implemented with
the linear scheme. For example, deformation of the organs
due to changes in the patient posture and a specific feeling of
subtle force over the region for removing connective tissue
and treatment of arteries. For these reasons, it is important to
analyze and evaluate the characteristics of the models with
real-time processing. This report presents an evaluation of
the characteristics of each model (rotation correction, geo-
metrical nonlinear, Mooney-Rivlin hyperelastic model) with
numerical experiments. For the experiment, we reorganized
and implemented a geometrical nonlinear FEM and a co-
rotated FEM that assumes material linearity based on the
previous work, and a newly implemented hyperelastic model
that has material nonlinearity.
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Unfortunately, there are no scientific data in particular on
the mechanical properties during surgery that are expected
to be used for validating many surgical simulators and
navigation systems. This report is an evaluation of the first
step in the series envisioned in the study regarding real-
time models from the engineering point of view. The final
evaluation will be performed taking into account the results
of in vivo experiments with laboratory animals using a
measuring device (currently under development) that can
gather images and forces at the same time.

Section II describes the weak form of the nearly-
incompressible Mooney-Rivlin model based on the principle
of stationary potential energy. We then explain the veri-
fication of the implemented model using nonlinear FEM
software ADINA in Section III. In Section IV, we evaluate
the behavior and characteristics of the implemented models.
Finally, we state our conclusions in Section V.

II. NEARLY-INCOMPRESSIBLE HYPER ELASTIC MODEL
WITH PERTURBED METHOD

The Mooney-Rivlin model is used to represent the elastic
potential energy function of hyperelastic material.

Let WM be the elastic energy density function of the
Mooney-Rivlin model,

WM = c1(ĨC − 3) + c2( ˜IIC − 3) (1)

ĨC ≡ ICIII
− 1

3

C , ĨIC ≡ IICIII
− 2

3

C ,

where IC , IIC and IIIC are the first, second, and third invari-
ants of right Cauchy-Green deformation tensor C. Adding an
energy term due to volumetric change in the elastic energy
density function and a constraining term to inhibit volumetric
change, then integrating this over analytical volume area
Ω and surface S yields the potential energy Φ̃ptb of the
perturbed Lagrange-multiplier method [1][2][4][5].

Φ̃ptb =

∫
WMdΩ+

∫
λ (J − 1)︸ ︷︷ ︸

WV

dΩ

−1

2

∫
1

α
λ2dΩ+

∫
RdS +

∫
QdΩ︸ ︷︷ ︸

Φext

, (2)

where, λ indicates the Lagrange multiplier, J is volume, α
corresponds to the bulk modulus, R is the surface force, and
Q is the body force. We assume no total energy change due
to external force in the following discussion.

By calculating the first variant δuΦ̃ptb and δλΦ̃ptb cor-
responding to displacement u and Lagrange multiplier λ,
we obtain the following equilibrium conditions. To solve the
above stationary energy problem is equivalent to solving the
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following equations.∫
Ω

(
∂WM

∂Cij
+ λ

∂WV

∂Cij

)
δCijdΩ

=

∫
∂Ω

t · δudS +

∫
Ω

ρ0g · δudΩ (3)∫ [
(WV − λ

α
)δλ

]
dΩ = 0 (4)

We approximated the above equations using the finite el-
ement method and implemented a nearly-incompressible
hyperelastic model. We first implemented the model based
on the projective method [6], but we initially misunderstood
the reason for the instability of the calculations inherent in
the model so we also implemented the perturbs Lagrange
method. Although the energy functions differ1, we found that
the derived weak-form Eqs.(3) and (4) are identical to that of
the projective method so the two methods seem equivalent.
In addition, instability in numerical calculations is a common
problem inherent in the concavity of the energy functions[3].

III. VERIFICATION OF THE IMPLEMENTED MODEL

It is necessary to create our own code for real-time imple-
mentation of a hyperelastic model. However, the nonlinear
finite-element method, in particular on tensor calculations in
hyperelastic material, is so complicated that it becomes easy
to make errors. To verify the implemented code, we used
nonlinear finite-element method software called ADINA to
verify the results of two different data density cases.

A. Conditions for verificationF finite element approxima-
tion,material properties,constraints

For surgical simulator, using a tetrahedral finite element
is suitable for geometrical shape approximation. We used
1101 elements and 401 nodes of the tetrahedral artery model
for verification. As the interpolation function, we used a
four point first-order approximation for the displacement and
one point for pressure as seen in TABLE I. Unfortunately,
this does not satisfy the inf-sup criteria of Ladyszhenskaya-
Babuska-Brezzi-KikuchiiLBBK) [3]. For a surgical simulator,
however, it is reasonable to adopt that shape function because
(1) the criteria indirectly show that a situation in which the
equations are greater than the unknown has never happened
in a surgical simulator, and (2) the process is highly time-
critical.

We used TABLE II for material properties. To adjust the
runtime conditions, we used 4α, as explained later, in the
simulator as ADINA’s bulk modulus κ. We performed the
large deformation indicated in Fig. 1 using the above runtime
conditions. As seen in the figure, the positions of the top
nodes are fixed, the x position of the middle nodes are moved
50% of the width (free for y and z directions), and the
position of the bottom nodes are moved 30% of the height
in the z direction (free for x and y directions).

B. Verification with ADINA
TABLE III compares the deformation between ADINA

and the implemented simulator for a nearly-incompressible
hyperelastic model. Subtable (a) compares the displacement,

1
Φ̃prj =

∫
WMdΩ + κ

2

∫
Prj(WV )2λdΩ + Φext, Prj(κWV ) = λ
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Fig. 1. Position constraints for verification with ADINA. The position of the
top nodes are fixed, the x position of the middle nodes are moved 50% of the width(
free for y, and z directions), and the position of the lowest nodes are moved 30% of
the height in the z direction ( free for x and y directions).

TABLE I
FEM APPROXIMATION FOR EACH MODEL

Model Displacement. Pressure Gauss Integration
Order Order Gauss Points

Linear FEM First order 4 points - -
Co-Rotated FEM First order 4 points - -
Geometrical NLFEM First order 4 points - 4 points
Hyperelastic iMooney) First order 4 points 1point 4points

and subtable (b) indicates the relative error on each node
and the average relative error for all nodes. The average
error is less than 2% for 5.1kg/m3 density and is 1% for
the 510kg/m3 case. From this result, we conclude that the
implementation is correct. In addition, the difference in
processing between geometrical nonlinear FEM model and
the Mooney-Rivlin model is seen only in the calculating
on the stress tensor, so we conclude that the geometrical
nonlinear FEM is also implemented correctly.

Although the commonly accepted solvable conditions for
simultaneous equations, i.e. a positive definition of the
stiffness matrix for the conjugate gradient method, are not
guaranteed for the nearly- incompressible hyperelastic mode,
we can get the correct result, as mentioned in Suzukifs paper
[9].

TABLE II
MATERIAL PROPERTIES FOR EXPERIMENTS: FOR MOONEY-RIVLIN MODEL,

EQUIVALENT c1 + c2 AND α ARE CONVERTED FROM YOUNG’S MODULUS AND

POISSON RATIO AND THEN SEPARATED INTO c1 AND c2 .

Finite Element Linear material Nonlinear material
Model Young’s Modulus Poisson c1 c2 α

Linear 1MPa 0.49 - - -
Co-Rotated 1MPa 0.49 - - -
Geometrical

Nonlinear 1MPa 0.49 - - -
1.343 0.335 4.167

Mooney-Rivlin - - ×105 ×105 ×106
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TABLE III
VERIFICATION FOR IMPLEMENTED NEARLY-INCOMPRESSIBLE HYPERELASTIC MODEL WITH ADINA

(a) Comparison of nodal displacement
Node Densityρ = 510kg/m3 Densityρ = 5.1kg/m3

No. Displacement by ADINA Displacement by implemented Simulator Displacement by ADINA Displacement by implemented Simulator
x z x y z x y z x y z

1 1.2374 0.6295 0.6913 1.2326 0.6236 0.6867 1.2489 0.6125 0.6257 1.2363 0.6196 0.6118
45 2.5000 1.9100 0.7110 2.5000 1.9016 0.6988 2.5000 1.8887 0.6046 2.5000 1.8918 0.5746
46 2.2106 1.6410 1.0841 2.1936 1.6294 1.0799 2.2237 1.6186 0.9724 2.1900 1.6209 0.9647
47 2.2708 1.7039 0.9784 2.2591 1.6975 0.9715 2.2801 1.6793 0.8700 2.2584 1.6920 0.8586
48 2.0747 1.4752 0.9899 2.0601 1.4672 0.9818 2.0895 1.4520 0.8819 2.0591 1.4585 0.8661
100 1.7181 1.1306 0.6531 1.7080 1.1159 0.6441 1.7333 1.1211 0.5446 1.7094 1.1032 0.5273
150 0.5841 0.1487 0.3183 0.5790 0.1414 0.3126 0.5814 0.1433 0.2874 0.5733 0.1430 0.2766
200 1.6391 2.6001 1.6142 1.6294 2.6014 1.6012 1.6217 2.5603 1.5319 1.5849 2.5805 1.5075
250 1.6399 2.3910 1.9311 1.6290 2.3737 1.9227 1.6177 2.3610 1.8626 1.5700 2.3364 1.8471
300 1.5931 2.6082 1.6256 1.6113 2.6067 1.6131 1.5534 2.5735 1.5481 1.5810 2.5700 1.5162
350 1.0939 2.3761 2.5134 1.0866 2.3467 2.5102 1.0533 2.3700 2.4751 1.0215 2.3106 2.4592
400 1.1094 2.1033 2.8546 1.0872 2.0550 2.8568 1.0749 2.1081 2.8108 1.0053 1.9962 2.8048

(b) Nodal displacement error
Densityρ = 510kg/m3 Density ρ = 5.1kg/m3

|Adina − Sim|/|Adina| ∗ 100 |Adina − Sim|/|Adina| ∗ 100
Node (%) (%) (%) (%) (%) (%)

1 0.3927 0.9586 0.6622 1.0112 1.1539 2.2242
45 0.0000 0.4405 1.7143 0.0000 0.1645 4.9638
46 0.7673 0.7083 0.3872 1.5144 0.1412 0.7901
47 0.5145 0.3791 0.6995 0.9518 0.7548 1.3130
48 0.7030 0.5413 0.8179 1.4561 0.4530 1.7907
100 0.5847 1.3113 1.3790 1.3757 1.5995 3.1751
150 0.8735 4.8830 1.7888 1.3924 0.2184 3.7774
200 0.5880 0.0444 0.8029 2.2654 0.7891 1.5910
250 0.6692 0.7245 0.4335 2.9452 1.0442 0.8322
300 1.1405 0.0600 0.7668 1.7802 0.1359 2.0592
350 0.6682 1.2292 0.1301 3.0214 2.5106 0.6418
400 2.0006 2.2992 0.0761 6.4780 5.3072 0.2157

Average displacement error 0.89 % Average Displacement error 1.72%

IV. MODEL EVALUATIONS

A. Artery model

We evaluate the behavior of each mathematical model
using artery data from near the kidney to create conditions
similar to the surgical simulator with two different densites. It
is difficult to adjust the material properties of the hyperelastic
model, which has nonlinear material properties compared to
the other models, which all have linear material properties.
We therefore use the following conversion relating Poisson
ratio and Young’s modulus to c1 and c2 of the Mooney-
Rivlin’s parameters.

c1 + c2 =
E

4(1 + ν)
; α =

E

12(1− 2ν)

The relation between the bulk modulus κ of ADINA and
α of Eq.(4) thus becomes κ = 4α. We conducted an evalu-
ation with a first-order four-nodal interpolation as the shape
function and a four points Gauss integration for the nonlinear
FEM as indicated in TABLE I using the material properties
in TABLE II for the two different density cases. The resultant
deformations are presented in Fig. 2. A nodal displacement
comparison between geometrical nonlinear FEM and co-
rotated FEM, and between geometrical nonlinear FEM and
linear FEM is given in TABLE IV. The average displacement
error is 6.1% and the maximum error is 43% in the co-rotated
FEM case. The average displacement error is 36% and the
maximum error is 58% in the linear FEM case.

B. Experiment results

Experiment with laboratory animals are necessary before
the final decision, but we currently have the following results.

(a) The Mooney-Rivlin model is the best model for
simulator as expected. Even for self-weight defor-

TABLE IV
COMPARISON OF DISPLACEMENT ERROR IN GEONLFEM AND

CORFEM, GEONLFEM AND LINEAR FEM: DENSITY IS

ρ = 5.1× 103kg/m3

|GNL − COR|/|NONL|% |GNL − LN |/|NONL|%
Node (%) (%) (%) (%) (%) (%)

1 0.5112 2.7307 18.1435 9.1842 37.1625 54.3600
45 0.0000 1.4042 11.5888 0.0000 49.1189 58.9639
46 0.3273 2.1791 7.7978 3.9853 40.3690 53.0914
47 0.7620 0.5687 9.1888 1.4450 42.3155 55.1929
48 1.0265 1.1255 10.0142 1.5526 40.8137 54.3329

100 0.5890 0.5687 10.7654 4.8364 47.8368 53.3939
150 1.8382 27.1952 43.2574 1.8382 27.1952 43.2574
200 1.0926 0.2909 3.1229 35.3661 56.0217 31.2568
250 2.8405 0.2272 2.1223 37.5813 58.4354 17.4508
300 0.8777 0.7175 2.1331 31.6699 59.1114 13.7821
350 3.7965 9.1566 12.4086 53.9827 66.8742 19.3299
400 11.3192 7.7658 10.1314 58.0800 64.4939 0.2555

Average displacement error 6.1% Average displacement error 35.7%

TABLE V
COMPARISON OF MODEL PROCESSING TIMES

Model Generation of Solving
stiffness matrix Simultaneous EQ

Linear FEM 0.09 4.2
Co-Rotated FEM 1 4.2
Nonlinear FEM 1.3 4.2
Mooney Rivlin 10.1 19.8

Indicated figures are ratios to the time of stiffness matrix generation in
co-rotated FEM.

mation, it produces behavior similar to the real
case. The image appears in Figs. 2(a)(b).

(b) The volumetric increase is noticeable in linear
FEM for large deformations as is well known. The
calculation cost is low but it cannot be applied to
a simulator for trainning in artery treatment. The
image appears in Fig. 2(c).
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(a) Deformations of Mooney-Rivlin,
GNLFEM, and CORFEM models are
shown from left to right. Density is
5.1 × 103kg/m3. The black line
drawings are the images from before
deformation.

(b) Deformations of Mooney-Rivlin,
GNLFEM and CORFEM models are
shown from left to right. Density is
510 × 103kg/m3. The black line
drawings are the images from before
deformation.

(c) Deformation of Mooney-Rivlin,
GNLFEM, CORFEM and Linear
FEM models are shown from left to
right. Density is 510 × 103kg/m3.
Volume increase of Linear FEM is
noticeable in large deformation.

Fig. 2. Simulation results of each model using artery data: Young’s modulus is 1Mpa, Poisson ratio is 0.49 for linear material; The corresponding material
properties are c1 + c2 = 1.67853× 105,c2 : c1 = 1 : 4,α = 4.166667× 106 for the Mooney -Rivlin model. The boundary is given in Fig. 1. The solver
is the conjugate gradient method.

(c) The difference between the deformations of co-
rotated FEM and geometrical nonlinear FEM is
not noticeable at life-scale sizes. To use co-rotated
FEM for a surgical simulator seems appropriate
given these results. As for surgical navigation,
which requires precise positioning, co-rotated FEM
has an average 7% error as seen in TABLE IV, so
it could not be applied for that purpose.

C. Discussions of implementation of MR. model in real-time
The Mooney-Rivlin model uses the Newton-Raphson

method to obtain the nodal displacement. For implementing
the Mooney-Rivlin in a surgical simulator, i.e., in real-time,
we suppose that to correspond the simulator’s one iteration
to Newton Raphson’s one iteration is reasonable. Because
the deformation is very small over that time span. Our
experience of implementing the conjugate gradient method
in a GPU, i.e., more than twenty times faster than the speed
of a CPU, suggests that it is possible to implement a nearly-
incompressible hyperelastic model in real time.

V. CONCLUSIONS

We developed a practical laparoscopic surgical simulator
using co-rotated FEM in a linear scheme. It was somewhat
of a compromise due to strong constraints on real-time
processing. The spread of surgical simulators and medical
simulations for clinical medicine in the near future will
place strong demands which cannot be met with a linear
scheme. For example, subtle force sensing by forceps for
peeling connective tissues and moving blood vessels is very
important for a preoperative surgical simulator, as is precisely
predicting the deformation of organs with patient posture
during surgery for torocar simulation and surgical navigation.
We implemented and evaluated several models, including the
co-rotated FEM, nonlinear FEM, and hyperelastic models,
for these advanced real-time medical applications. As a

result, we confirmed that the hyperelastic model is the most
suitable for a surgical simulator as anticipated and that the
co-rotated FEM and geometrical nonlinear FEM are almost
the same in both processing time and positioning accuracy.
In addition, it seems possible to implement the hyperelastic
model in real time with current off-the-shelf PCs.
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