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ABSTRACT

Automated cancer localization with supervised techniques plays
an important role in guiding biopsy, surgery and treatment. It is cru-
cial to have an accurate training dataset for supervised techniques.
Since different devices with e.g. different protocols and/or field
strengths cause different intensity profiles, each device/protocol
must have an accompanying training dataset which is very costly
to obtain. In this paper, we propose a novel method that has the
ability to design classifiers obtained from one imaging protocol
and/or MRI device to be used on a dataset from another protocol
and/or imaging device. As an example problem we consider prostate
cancer localization with multiparametric MRI. We show that simple
normalization techniques such as z-score are not sufficient to allow
for cross-device automated cancer localization. On the other hand,
the methods we have originally developed based on relative intensity
allows us to successfully use a classifier obtained from one device
to be applied on a test patient imaged with another device.

Index Terms— Intensity Normalization, Magnetic Resonance
Imaging (MRI), Prostate Cancer, Linear Discriminant Analysis
(LDA)

1. INTRODUCTION

Automated cancer localization with supervised techniques plays
an important role in guiding biopsy, surgery and treatment. In the
past, many detection and localization methods for a broad range of
cancer types have been developed using supervised classification
techniques. It is crucial for supervised methods to have accurate
training data, otherwise constructed classifier will result in high
error rates. Different devices with e.g. different protocols and/or
field strengths cause different intensity profiles; therefore, each de-
vice/protocol must have an accompanying training dataset which is
very costly to obtain. Therefore it would be a significant advantage
if we could apply a classifier obtained from device A on test data
obtained from device B. Cross-device/protocol training and testing
has never been successfully implemented in the past. Unfortunately,
simple normalization techniques such as z-score are not sufficient
to allow for cross-device automated cancer localization. In this
study, we propose a novel relative intensity based method that has
the ability to design classifiers obtained from one imaging protocol
and/or MRI device to be used on a test patient imaged with another
protocol and/or imaging device.

As an example problem we consider prostate cancer localiza-
tion with multiparametric MRI. Prostate cancer is one of the most
prevalent and leading causes of cancer related death for men in the
United States [1]. Several fully automated localization methods have
been developed in the past [2]-[S]. However, none of these earlier
proposed techniques has considered cross device-protocol training.
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We develop a novel method based on relative intensities to solve the
problem of cross-device training. To evaluate the proposed method,
we use two datasets collected from a 1.5-T Excite, GE and a 1.5-T
Philips Healthcare scanners at the University of Chicago [1].

Figure 1 presents the motivation for our cross-device automated
classification method. Figure 1.(A)-(B) show the classifier trained
using tumor (green) and normal (red) pixels of several patients for
Philips and GE devices, respectively. Figure 1.(C)-(D) shows the z-
score normalized Philips data with GE classifier (classifier from part
(B)) and GE data with Philips classifier (classifier from part (A)).
From parts (C) and (D), we notice that if we directly apply classifier
developed for Philips machine to GE, or vice versa, it results in high
error rates even though z-score normalization is used for individual
devices. Reducing this error rate and thereby allowing cross-device
training is the overall objective of this paper. Figure 1.(E) demon-
strates the Philips data with GE classifier after the proposed relative
intensity transformation is applied. Similarly, Figure 1.(F) shows the
GE data with Philips classifier after relative intensity transformation
is applied. Parts (E)-(F) show that it is possible to design an accurate
classifier from one MRI device to be used on another MRI device
using the proposed method.

Relative intensity as described in Section 2.2 can be computed
efficiently for training data, but can not be calculated directly for
testing data without the knowledge of the labels of tumor and nor-
mal. Therefore, we propose an iterative algorithm to estimate the
relative intensity based on the current estimate of the class member-
ships. In this study, we use linear discriminant analysis (LDA) for
localization. Note that the proposed segmentation method can also
be implemented with other popular classifier such as support vector
machines, perceptrons, or neural networks [6].

The rest of the paper is organized as follows. In Section 2, we
briefly describe z-score normalization, discriminant analysis, and
the proposed method. Section 3 presents the quantitative, qualitative
results for the z-score normalization and the proposed methods.
Finally, conclusions are presented in Section 4.

2. METHODOLOGY

In this section, we first describe z-score normalization and its short-
comings in cross-device segmentation applications. Next, we ex-
plain the proposed relative intensity method, and also briefly de-
scribe linear discriminant analysis used for classification.

2.1. Z-score normalization

Z-score normalization has been ubiquitously used in medical imag-
ing applications [7]. This technique brings intensities of different
types of MR images within the same dynamic range, improving the
stability of the classifiers. It is applied such that intensities have zero
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Fig. 1. Figure presents the outline of our cross device automated
classification study. (A)-(B) shows the classifier learnt using tumor
and normal pixels of several patients for Philips and GE devices,
respectively. Fig. (C)-(D) shows the z-score normalized Philips data
with GE classifier and the z-score normalized GE data with Philips
classifier. Fig. (E) demonstrate the Philips data with GE classifier
after relative contrast transformation applied to it. Similarly, Fig.
(F) shows the GE data with Philips classifier after relative contrast
transformation applied to it.

mean and unit standard deviation for all the training and testing sub-
jects for a particular image type:

vy = X ()

gi

where X;; is the image type 7 for patient j, Y;; is the normalized
image type ¢ for patient j, and pu;, o; refers to the mean and stan-
dard deviation of multiparametric image type ¢. As noted in earlier
studies, z-score normalization works well for patients with similar
intensity distributions. However, this assumption usually fails due to
the high variation in cross-device/protocol intensities. The z-score
normalization induce a bias by shifting the data by a global mean.
However, this method is not sufficient to obtain satisfactory results
as apparent from e.g., Figure 1.(D).

For further explanation, Figure 2.1 shows a toy example to il-
lustrate the difference between the z-score normalization and the
proposed method. Figure 2.1.(A)-(B) illustrates the original inten-
sities and z-scored normalized distributions for two patients from
two different devices. A classifier constructed using device 1 (see
the dashed line in Figure 2.1.B ) will not properly classify test data
from device 2. Note that proposed method shown in Figure 2.1.(C)
is able to classify test data coming from device 2 without errors.

Potential problems associated with z-score normalization has
not received much attention in the past other than a few recent stud-
ies [3], [7]. However, none of these available methods consider
the problem of cross-device training for localization problems. To
avoid the potential problems caused by z-score normalization and
to be able to successfully apply cross-device training, we introduce
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Fig. 2. Intensity distributions in (A) for data coming from two dif-
ferent devices, (B) z-score normalization applied to data, and (C)
proposed method.

a novel approach using iterative normalization based on the idea of
relative contrast between patients as explained next.

2.2. Proposed Method

In this section, we propose a novel normalization technique to mimic
manual human segmentation. Human readers typically compare the
contrast between the classes without knowing the actual intensity
values. In this study, we utilize relative intensity idea to perform the
segmentation task. We define the relative intensity for the i*" pixels
as follows:

x:'rcn = (xzm - Mlm)/a Vi (2)
where ;. is the pixel intensity of the m!" feature at pixel ¢, f1m
is the mean intensity of the m!" feature of tumor class, and o is the
standard deviation of the m®" feature. Notice that the relative in-
tensity for one class depends on the other class requiring the ground
truth and this is not a simple affine transformation of data.

For the training data, labels are known a priori and we can com-
pute relative contrast directly using (2). However, for the test data,
we can not simply apply Eq. (2) since we do not know the label
information. Therefore we propose an iterative method to estimate
the class memberships. Initially, we start with an initial estimate
of class labels obtain from available techniques such as LDA with
z-score normalization. Next, we update the px and o values

_ L st L )2
o= D w0t = > (w—w? 3)

€Sy z€S

where k denotes the class number, S the set of elements in class
k (S denotes all elements) and N}, the number of pixels in class k
set by LDA classifiers. Then, we calculate the relative contrast for
this initial labeling. Next, we classify our initial estimates into two
groups by the LDA classifier. The method described here offers an
elegant way of transforming images such that cross device training
is now possible.
The main steps of the proposed algorithm are as follows:
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(1) Given the training data with their labels from imaging de-
vice/protocol A, create new intensity values according to Eq. (2).
(2) Using the training data obtained from Step 1, construct a classi-
fier using linear discriminant analysis (LDA) algorithm.

(3) Apply the given test data from imaging device/protocol B on the
classifier model obtained in Step 2.

(4) Update px, and o according to Eq. (3).

(5) Update the relative contrast using Eq. (2).

(6) Repeat steps (3)-(5) until convergence.

The above iterative process stops when there is no change in relative
intensity values. In our experiments, this process takes less than 20
iterations, hence, there is no heavy computation involved.

2.3. Linear Discriminant Analysis (LDA)

In this paper, we use LDA for classification; however, note that the
developed relative intensity method is applicable to any type of clas-
sifier. Given a finite sample data set (z;,y;) fori = 1,2,--- | N
where 2; € R® is a d dimensional input (feature) vector and y; €
{1,2} is a class label, the objective is to estimate the parameter
vector w of the discriminant function f(z) = (w,z) + b in or-
der to classify future test samples. Linear Discriminant Analysis
(LDA) searches for those vectors in the underlying space that best
discriminate among classes. In LDA framework, (for all the sam-
ples of all classes) we define within-class scatter matrix given by
Sw =2 ice 2jer(@i — pi)(xs — wi)™, and between-class scat-
ter matrix Sp = (u1 — p2)(u1 — p2)”, where p; represents the
mean of class ¢. Linear Discriminant determines w vector by max-

25,/57‘/% The solution is given by
w = Syt (11 — p2). Itis often useful to see this w in geometrical
terms: the observation belongs to y if corresponding is located on a
certain side of a hyperplane perpendicular to w. The location of the

plane is defined by the threshold b, which is equal to b = w- W

imizing the ratio arg max,,

3. EXPERIMENTS

3.1. Description of Data

In this section, we show that we are able to perform successful
classification of the test data from one device by using a classifier
obtained from another device. We also show that this was not possi-
ble with available methods. In order to assess the performance of the
proposed method, we use a dataset that is collected by two different
MRI machines. These two devices are : (i) 1.5-T scanner (Excite
HD) GE Healthcare, (ii) 1.5-T scanner (Achieva) Philips Healthcare.
An endorectal coil (Medrad) combined with a phased-array surface
coil was used for all examinations.

Protocol for GE Healthcare Scanner is as follows: Array spa-
tial sensitivity-encoding technique (parallel imaging) factor of 2
was used in all sequences. T2-Weighted Imaging Parameters; TR
range/TE range = 3200 — 3500,/90 — 100, Matrix size = 192 x 256,
Echo-train length = 19, Number of signals acquired= 4, Section
thickness= 3 mm, Intersection gap = 0 mm, FOV = 14 — 16
cm. Diffusion-Weighted Imaging Parameters; TR range/TE range
= 7000 — 8000/80 — 90, Matrix size = 128 x 128 — 224, b values
= 0,1000,and 1500 s/mm?, Number of signals acquired = 4,
Slice thickness = 4 mm, Gap = 0 mm, FOV = 1418 cm.

Protocol for Philips Healthcare Scanner is as follows: Effec-
tive sensitivity-encoding (parallel imaging) factor of 2 was used
in all sequences. T2-Weighted Imaging Parameters; Resolution
= 0.8 x 0.8 x 3 mm, TR range/TE = 4300 — 5000/120, Matrix
size = 204 x 256, Echo-train length = 24, Number of signals

acquired = 4, Section thickness = 3 mm, Intersection gap = 0 mm,
FOV = 14 — 18 cm. Diffusion-Weighted Imaging Parameters; TR
range/TE range = 3800 — 4200,/80 — 90, Matrix size = 128 x 128,
b values = 0, 1000, and 1500 s/mm?, Number of signals acquired
= 4, Slice thickness = 4 mm, Gap = 0 mm, FOV = 14 — 18 cm.
Ground truth: Ground truth is required for both training the clas-
sifiers, and for evaluation. After radical prostatectomy, the surgical
specimen of the entire prostate was fixed in 10% buffered formalin
for 24 hours. After dehydration, the specimen was cut serially into
3-mm-thick blocks from apex to base in transverse planes. Each
block was then either halved or quartered (depending on its size),
and microtome slices were cut and stained with hematoxylin-eosin.
A genitourinary pathologist reviewed hematoxylineosin stained
slices with cancer, and, by using a four-quadrant (right anterior,
right posterior, left anterior, and left posterior) approach, recorded
on a schematic prostate diagram the size, location, gleason score,
and presence or absence of carcinoma. A radiologist determined
the locations of the carcinoma and normal regions on T2-weighted
images on the basis of these diagrams and consultation with the
pathologist. Each hematoxylineosin stained slice was then visually
matched to a corresponding T2-weighted MR image on the basis of
the location of the ejaculatory ducts, the dimension of the prostate
and the approximate distance from the base or apex.

We conducted experiments for the following MR images; T2-
weighted, apparent diffusion coefficient (ADC) maps. We normalize
T2-weighted image using a uniform region from the bladder, this
allows us to bring T2-weighted images into a comparable range.
Apparent diffusion coefficient (ADC) maps are derived from DWI
parametric maps. Prostate cancer tissue intensity is lower than
healthy regions in both T2 and ADC images. It is an indicator of
the movement of water within the tissue and provides a measure
of the flow and distance water molecule has moved. We have used
a dataset obtained from 8 patients from both devices with ground
truth.

3.2. Experimental Results

In addition to visual results, number of misclassified pixels (error
rate) and dice coefficients are used to evaluate the performance quan-
titatively. Dice measure (DSC) is a common metrics used by many
researchers in prostate cancer segmentation [2], [3]. It is defined as,

|AN B|

Dice(A,B)=2- ——~ |
Al + | B|

where A is the segmentation result, B is the ground truth for the tu-
mor and the operation |.| means the number of segmented pixels.

In our experiment, we perform a cross-device classification in
which we design a classifier using data from device A and test it
on the data from device B. Our evaluation consists of two parts.
First, we look at the classification error rate using normal regions
and tumor regions for 8 patients (4 patients data collected with GE
machine, and 4 from Philips machine). This error rate values are
reported in Table 1 for the proposed method and z-score normaliza-
tion method. Figure 1.(C)-(E) corresponds to the error rates listed in
this table. Note that number of misclassified pixels using proposed
method, 128, is much lower than the case for z-score normalization
271 when we design a classifier using Philips device and test it on
the GE device. Similarly, number of misclassified pixels reduces
from 718 to 141 when we train a classifier using GE device and test
it on the Philips device comparing the proposed method with z-score
normalization.

Next, we apply the same technique on the whole peripheral zone
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Table 1. Comparison of (misclassified pixels)/(number of test pix-
els) using data from 8§ patients (4 patients of GE machine, 4 pa-
tients of Philips machine) for z-score normalization and the proposed
method. [Ph(train), GE(test)] denotes that classifier is constructed
using Philips device’s training data, tested on the GE’s data.

Error rate
Proposed: GE (test) and Ph (train) | 141/1959
z-score: GE (test) and Ph (train) 718/1959
Proposed: Ph (test) and GE (train) | 128/776
z-score: Ph (test) and GE (train) 2717776

to be able to visually compare segmented tumors. Note that we com-
pare the proposed method to an LDA classifier constructed using
z-score normalized data. Figure 3 demonstrates the visual results
obtained using the proposed method and the z-score normalization.
For patient 1 and patient 3 ( both obtained from Philips scanner),
there is a large amount of false positives with z-score normalization.
However, results in the fourth column show that proposed method
has better sensitivity, specificity rates compared to z-score normal-
ization. Table 2 demonstrates the mean and standard deviation of
DSC, sensitivity and specificity values for 8 patients for these two
methods. Proposed technique results in a dice measure of 0.4369,
whereas z-score normalization generates a dice measure of 0.4029.
In terms of sensitivity and specificity rates, proposed method again
results in improved performance.

Table 2. Mean = std of DSC, sensitivity and specificity rates for 8

patients with z-score normalization and the proposed method.

Method Z-score Proposed
Dice 0.4029 £ 0.1855 | 0.4369 + 0.1914
Sens 0.8151 £ 0.2100 | 0.8651 £ 0.2066
Spec 0.5261 £ 0.2095 | 0.5342 £ 0.1545

Our preliminary experiments indicate that a simple normaliza-
tion technique such as z-score is not sufficient to allow for cross-
device automated cancer localization. On the other hand, the method
we have proposed using relative intensity allows us to successfully
use a classifier obtained from Philips device applied on a test patient
imaged with GE device, and vice versa.

4. CONCLUSION

In this paper, we presented a novel image segmentation method to
allow for cross-device automated cancer localization. This iterative
algorithm based on relative intensity enables us to successfully uti-
lize a classifier trained with a classifier obtained a GE MRI device
to be applied on a dataset obtained from a Philips MRI device, vice
versa. This method is highly advantageous when it is costly to obtain
training data for an MRI device. We showed that simple normaliza-
tion techniques such as z-score are not sufficient to allow for cross-
device automated cancer localization. Proposed technique generates
a dice measure of 0.4369, whereas z-score normalization generates
a dice value of 0.4029.

In the future, we will test our method on a larger dataset. How-
ever, our results based on the toy data and 8 patients show that the
proposed method is a promising technique for cross-device auto-
mated classification.

T2 Tumor Z-score

Proposed

() (b) (© (d)

Fig. 3. Comparison of LDA segmentation results of the three pa-
tients obtained from the normalized data and z-score normalized
data. The first column is the normalized T2 image, second column
is the ground truth outlined by a radiologist, the third column is re-
sult obtained with the z-score normalized image, and the fourth col-
umn is obtained by the proposed normalized data. We observe that
significant improvement is obtained when our method is used with
cross-device training.
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