
 

 

 

  

Abstract—A new automatic system to detect pathologies in 
human brain magnetic resonance (MR) images is presented. 
The goal is to classify normal versus abnormal images affected 
by Alzheimer, Glioma, Herpes, Metastatic, and Multiple 
Sclerosis. The extracted features are the fractal dimension of 
edges in the Hilbert domain, and the skewness and kurtosis of 
their spectral energy distribution. The proposed system (FDSE) 
outperforms the popular discrete wavelet transform (DWT) 
and principal component analysis (PCA).  

I. INTRODUCTION 

A number of automated diagnosis systems have been 
proposed for classifying normal versus abnormal brain tissue 
based on two-dimensional magnetic resonance (MR)  images 
[1]-[3]. MR images can provide high-resolution anatomical 
details and reliable early detection of pathologies at the 
beginning stages is essential for developing appropriate 
treatments. Most works on MR image classification use the 
discrete wavelet transform (DWT) as the first step of feature 
extraction. Thanks to the DWT’s property of preserving both 
the time and frequency dimensions of the input signal while 
allowing a scaled view of the signal [3], it has been 
successfully applied to brain MR images to extract textural 
features for classification. For instance, Chaplot et al. [1] 
used the Daubechies-4 wavelet decomposition at level two to 
extract low-low frequency (approximation) coefficients to be 
fed to support vector machines (SVM). The radial basis 
function and polynomial function were used as kernels for 
non-linear training and testing. The dataset consisted of fifty-
two brain MR images of which six normal and forty-six 
abnormal, of brain affected by Alzheimer’s disease. Four 
normal images and six abnormal images were randomly 
chosen for training the SVM and forty-two images were used 
for testing. The obtained correct classification rate was 98% 
for both types of kernels. El-Dahshan et al. [2] applied 
principal component analysis (PCA) to the DWT’s low-low 
frequency image. In this case, a 3rd level DWT 
decomposition was performed, with Haar wavelets used to 
extract the low frequency coefficients. Then, the first seven 
principal components were kept to form the features vector 
fed to the classifier, namely the backpropagation artificial 
neural network (BPNN) trained with Levenberg-Marquardt 
numerical algorithm and the k-nearest neighbor (k-NN). The 
dataset included ten normal images and sixty abnormal 
images of Glioma, Metastatic bronchogenic carcinoma, 
Alzheimer’s disease, and visual agnosia. The learning and 
test set size were not indicated. The correct classification 
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rates obtained by BPNN and k-NN were 97% and 98%, 
respectively. Zhang et al. [3] also applied Haar wavelets and 
third-level decomposition to extract the low frequency 
coefficients. Then, PCA was applied to obtain the first 
nineteen principal components, thus preserving 95.4% of the 
total variance of the low frequency image. The obtained 
principal components were sent to a BPNN trained with 
scaled conjugate gradient (SCG) for classification. The initial 
dataset consisted of 18 normal and 48 abnormal images of 
Glioma, Meningioma, Alzheimer, Alzheimer plus visual 
Agnosia, Pick’s disease, Sarcoma, and Huntington’s disease. 
The data were randomly divided into two equal-size learning 
and test sets and the obtained correct classification rates on 
both training and test images were 100%. Cross validation 
was ignored in all the previous studies.  

In this paper, we present a new approach based on fractal 
geometry and the spectral energy distribution of edges 
(patterns/object boundaries) in brain MR images for detecting 
those pathologies that manifest themselves as regions of 
brightness change in the cerebral tissue. Because edges 
represent abrupt changes in image brightness, their 
distributions in normal and abnormal brain MR images may 
be different, and we propose to distinguish normal from 
abnormal anatomical silhouettes in human brain MR images 
by means of their fractal dimensions and spectral signatures. 
The goal is to compare our approach with the DWT-PCA in 
the most recent work [3] where 100% correct classification 
rate was reported.  

The paper is organized as follows. Section 2 provides 
more details about our methodology; Section 3 presents the 
data and displays the simulation results; a conclusion along 
with future direction is drawn in section 4. 

 

II. METHODOLOGY 

The Hilbert transform [4] is applied to the brain MR 
image for analysis purpose. The advantage of the Hilbert 
transform is that it does not require a predetermined origin 
and baseline [5] and is a viable approach to display the time-
frequency structure of non stationary signals [6]. Then, a 
Sobel filter [7] is applied to the Hilbert transformed image to 
detect edges. Given MR images with high intensity contrast 
regions, the Sobel filter which is based on first-order 
differentials could provide strong edge strength at the brain 
boundaries affected by those pathologies. Other edge 
detectors such as Laplacian and Canny’s operator could be 
considered, but the former may lead to false detections and 
the latter requires parameter tuning [8]. The extracted edges 
are analyzed by means of fractal and power spectrum 
signatures to extract features. The fractal of the image is 
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determined by the fractal dimension (FD) derived from the 
power-law scaling [9][10] and measures the irregularity of 
edges. In addition, two high order statistics, namely the 
skewness and kurtosis of the spectral energy distribution of 
the Sobel processed image, are computed to form the image 
feature vector with FD. Indeed, since a normal human brain 
MR image appears to be symmetric, we make the hypothesis 
that skewness and kurtosis are suitable to account for 
symmetry. Finally, the features vector is fed to a BPNN 
trained by the scaled conjugate numerical algorithm as in [3]. 
The diagram of our system (FDSE) is shown in Figure 1, 
whilst the standard system based on DWT and PCA [2][3] is 
shown in Figure 2.  
 

 
 
Figure 1. Diagram of the FDSE system. 

 
Figure 2. Diagram of the DWT-PCA system as in [2][3]. 

 

We also followed the DWT-PCA methodology described in 
[3] (see Figure 2) as an alternative way to extract features 
from our image database. This was done to assess the 
effectiveness of our methodology in comparison. As in [3], 
we used the Haar wavelet as mother function and set the level 
of DWT decomposition to three. Using PCA, we extracted 
the p principal components (features) that preserved ninety-
five percent of total variance to be fed to the BPNN trained 
with scaled conjugate gradient numerical algorithm. As in 
[3], p was found to be nineteen.  

As for the details of our screening system (FDSE), they are 
presented below.  

A. Hilbert transform 
The Hilbert transform [4][6] of a signal x(t) is defined as: 
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It we represent the edges of x(t) with a staircase function, it 
can be shown that their locations correspond to the 
singularities of H[x(t)] manifested by its extrema [7]. These 
could be determined by processing the magnitude of the 
analytic signal xa(t) = x(t) + jH[x(t)], or by using amplitude 
thresholding. In this work, a Sobel filter is used to extract the 
edge image, after transforming the original one by applying 
the Hilbert transform to each column. Thus, the Sobel filter is 
applied to H[x(t)].  

B. Sobel filter  
The Sobel filter [8] processes the obtained Hilbert image for 
edge detection. It does so by measuring the gradient of the 
image intensity at each pixel, using two 3×3 differentiation 
matrices (kernel Sobel filters) along the horizontal (moving 
right) and vertical directions (moving down). Then, each 
pixel of the obtained images provides the x or y axis 
component of the gradient and the image edges can be 
derived from the distribution of the gradient amplitude, 
defined as:  
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and the * operator denotes two-dimensional 
convolution.Figures 2 and 3 provide examples of original 
MR images and their Sobel-filtered versions. 

C. Fractal Dimension   
The fractal dimension (FD) measures the degree of 

complexity of a geometric shape. There exist many ways to 
define it [10][11]. The most popular ones define FD as the 
exponent of a power law between the number of fragments 
obtained by splitting the shape into pieces and the shape 
reduction factor used to obtain them. For instance, the fractal 
dimension of a 2-D image would be the exponent obtained 
by splitting the image into blocs and relating their number to 
the split factor used (self-similarity method). Alternatively, 
the image can be placed on a grid whose x axis resolution is 
varied and, each time, the number of boxes that the image 
occupies in the grid is counted. Then, the slope of the best-fit 
Log-Log straight line between these two variables is 
computed to yield the fractal dimension (box counting 
method). The box-counting technique is adopted in this 
paper for simplicity and because it is more generic (it also 
applies to non self-similar shapes). Following this technique, 
the fractal dimension of an image structure (edge) is given 
by: 
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where, r is the box size scale factor and N(r) is the number 
of boxes used to cover the edge of the image. By varying the 
box size, FD is estimated by least-squares regression fitting 
of log(N(r)) against log(1/r).    
 

D. Spectral Energy Distribution    
Based on the Fourier transform [12], spectral analysis 

allows detecting high-energy bursts in the image spectrum. 
For a given M×N digital image f (x,y), the discrete Fourier 
spectrum F(u,v) is computed as [12]:  
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where u = 0,1,…, M-1 and v = 0,1,…, N-1. Then, the 
spectral energy distribution S(θ ) of the Fourier spectrum for 
each radial direction θ  is given by:  
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where s(r,θ ) is the Fourier spectrum F(u,v) in polar 
coordinates with u = r⋅ cos(θ )and v=r⋅ sin(θ ), r being the 
radius of a circle centered at the origin of the two-
dimensional spectrum and  θ  an angle varying between 0 
and 180°. S(θ) is a one-dimensional signal from which high 
order statistics, namely skewness and kurtosis, will be 
computed. The results are then combined with the fractal 
dimension to form the feature vector.    
 

D. The classifier 
   As in [3], the feature vector is fed to a BPNN [13] 

trained with the scaled conjugate gradient (SCG) algorithm 
[14] for final image classification and comparison purpose. 
The SCG was chosen by the authors in [3] because it is 
considerably faster than standard conjugate gradient methods. 
This is because the SCG algorithm is based on conjugate 
directions but does not perform a line search at each iteration 
t. For instance, the weights w of the network are updated as 
follows:  

( ) ( ) ( ) ( )tdttwtw ⋅+=+ λ1  (7) 

where d is the search direction and λ is the step size which 
minimize the function ( ) ( ) ( )( )tdttwf ⋅+ λ . The step size is 
computed as follows [14]: 
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where H is the Hessian matrix and γ ≥ 0. More technical 
details about the algorithm and its parameters are given in 
[14]. The number of neurons in both the input layer and 
hidden layer was set to the number of features: nineteen for 
the DWT-PCA approach and three for the FDSE approach. 
The transfer function in the hidden layer was the tangent 

sigmoid. All input data were scaled to [-1, 1] prior to 
learning.   

III. DATA AND SIMULATION RESULTS 

The database consisted of ten normal brain MR images 
and fifty six abnormal images that corresponded to 
Alzheimer (13), Glioma (12), Herpes (8), Metastatic 
Bronchogenic Carcinoma (9), and Multiple Sceloris (14). All 
the images were T2-weighted of 256×256 size, obtained from 
the Harvard Medical School webpage [15]. Figures 3 and 4 
show examples as well as the effect of Sobel filtering them in 
the Hilbert domain and of computing their spectral energy 
distribution (from which skewness and kurtosis are 
computed). 

   
Figure 3a. Normal (left), Glioma (middle), and Metastatic BC (right).  

   
Figure 3b. Alzheimer (left), Herpes (middle), and Multiple Sclerosis (right).  
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Figure 4. Sobel filtered image in Hilbert domain (left) and its spectral 
energy distribution (right). Example of a normal image.  

 
Ten experiments were conducted with the data being 

randomly divided into two equal-size learning and test sets 
each time (in contradistinction with [3] where only one trial 
was conducted), with the goal to evaluate the average 
accuracy of the backpropagation neural network. In each 
experiment, the performance of BPNN was evaluated by 
finding the average correct classification rate. Then, the total 
average correct classification rate and its standard deviation 
were computed. The classification results are given in Table 
1. They indicate that the approach based on the fractal 
dimension and skewnes and kurtosis of the edges’ spectrum 
energy distribution achieves 91.78% correct classification 
rate against 82.69% obtained by the DWT-PCA described in 
[3].  In addition, the standard deviation of our approach 
(0.0148) is substantially lower than that of the DWT-PCA 
approach (0.0796), which shows a better generalization 
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capability. The fact that we only obtained 82.69% accuracy 
in comparison to the 100% reported in [3] could be due to our 
use of cross validation and the fact that we did not use 
exactly the same pathologies. In Table 2, we give the correct 
classification rate (CCR), specificity and sensitivity when the 
BPNN is trained to classify normal image against only one 
type of pathology. The results obtained with DWT-PCA are 
given in parenthesis. As one can see, the proposed features 
perform better than the standard approach for all pathologies; 
in particular, we obtained 100% accuracy for normal versus 
Multiple Sclerosis, and 96% accuracy for normal versus 
Alzheimer’s disease.  

 
Table 1. Correct classification rate: normal against all.  

 FDES DWT-PCA 
Average 91.78% 82.69% 
Standard deviation 0.0148 0.0796 

 
 

Table 2. Simulation results: normal against one.  

 Alz Glioma Herpes Meta. Sclerosis 
CCR 96 (86) 83 (80) 80 (77) 83 (79) 100 (92) 
Specificity 95 (77) 90 (68) 70 (68) 77 (57) 100 (88) 
Sensitivity 100 (100) 57 (87) 90 (80) 78 (92) 100 (85) 

 
     In our study, normal images are positive samples and 
abnormal images are negative samples. Therefore, according 
to specificity statistics (correctly classified negative samples 
over true negative samples), our approach performs better 
that the DWT-PCA in detecting all negative samples. The 
difference is particularly striking for Alzheimer (95%) and 
Glioma (90%). On the other hand, we obtained mixed results 
for sensitivity statistics (correctly classified positive samples 
over true positive samples). In this case, DWT-PCA 
preformed better for Metastatic (92%) and Glioma (87%), 
and FDSE equally well or better for the other pathologies..    
     The better overall performance of the proposed approach 
could be due to the following causes: First, the DWT-PCA 
approach is based on the analysis of the biological tissue by 
means of multi resolution pixel analysis with a 
predetermined mother wavelet and level of decomposition. 
The choice of the wavelet and level of decomposition could 
have an impact on the effectiveness of the extracted features. 
On the other hand, the Hilbert transform requires no 
predetermined filter or level of analysis. Second, PCA relies 
on a transformation that performs a linear projection; thus, it 
fails to capture a nonlinear distribution of pixels in the 
original feature space. Third, since a normal human brain 
MR image appears to be symmetric, the skewness and 
kurtosis computed from the spectral signature of edge and 
fractal dimension are all suitable to account for asymmetry 
in the images. For instance, the fractal dimension assesses 
the complexity of a geometric form and, thus, helps to 
quantifying multi convoluted patterns in brain MR images.  

IV. CONCLUSION 

In this work, a comparison is made for detecting pathologies 
in brain MR images between two feature extraction 
techniques, one based on image compression with the two-

dimensional discrete wavelet transform and subsequent 
dimension reduction with principal component analysis 
(DWT-PCA), and the edge fractal dimension and spectral 
energy signature (FDSE). The classification results obtained 
with a feedforward neural network with error 
backpropagation training (BPNN), trained with the scaled 
conjugate gradient algorithm show that the FDSE-based 
diagnosis system outperforms the popular approach based on 
DWT-PCA for accuracy. They also show that extracting 
features from edges leads to better generalization capability 
in comparison to textural features. The classification 
accuracy could be improved further by replacing the BPNN 
classifier by support vector machines (SVM; work in 
progress) and a larger database would probably lead to more 
improvement in generalization capability.  
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