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Abstract— A linear image reconstruction algorithm for solv-
ing the Magnetic Induction Tomography inverse problem is
presented. It’s an optimization process to determine a recon-
struction matrix that does the best mapping between a set of
training parameter vectors and their respective measurements
dictated by a forward model. It allows the simultaneous 3D
reconstructions of the electric conductivity, electric permittivity
and magnetic permeability. The results were compared with
the ones obtained from a single-step regularized Gauss-Newton
method and a reduction of 15% in the image error was verified.
The behavior of the developed algorithm in a simulated clinical
environment was also assessed using a realistic bioimpedance
model of the human head, derived from a high resolution
magnetic resonance image.

Index Terms— Magnetic Induction Tomography, Linear Re-
construction, Passive Electrical Properties.

I. CONTEXT

Magnetic Induction Tomography (MIT) is a non-invasive
imaging modality based on the eddy current effect. Its
applications range from nondestructive testing [1], to a more
recent trend, the medical field (e.g. [2–5]). It aims to use
the differences of the passive electric properties (PEP) of
tissues to form tomographic images of the human body, while
exploiting the inherent advantages of this technology, such as
its low cost, contactless nature, high temporal resolution and
the fact that the magnetic field can penetrate deeply within
biological tissues.

The electrical conductivity (σ), dielectric permittivity (ε)
and magnetic permeability (µ) are the PEP with greater
diagnostic relevance in the medical field. Most studies are
only focused on reconstructing the electrical properties of
the medium (e.g. [2–5]). The assessment of the magnetic
permeability is most often negleted but it could play a very
important role in the diagnosis of pathologies that affect
the tissue’s magnetic properties, an example of which is
hemochromatosis where the development of iron overloads
occurs in the liver [6].

The image reconstruction in MIT is an ill-posed and non-
linear inverse problem. The 3D PEP map is inferred by a
set of electromotive force (emf) measurements acquired by
sensing coils placed around the periphery of the medium,
when a time harmonic current is fed to a source coil. This
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produces a primary magnetic field that induces eddy currents
within the object, which in turn, due to the low conductivity
of biological tissues, generates a secondary magnetic field of
a much smaller amplitude. The measurements are dictated
by the PEP distribution and can be predicted by a a forward
model based on a set of electromagnetic partial differential
equations.

The inverse problem is conventionally solved iteratively
(e.g. in [2, 9, 10]). The material coefficient map in each
iteration is refined by resorting to the forward model that
determines the solution of several eddy current problems
and simulates the set of measurements to be compared
to the real ones. Although iterative methods based on the
sensitivity analysis using the reciprocity theorem and re-
sulting adjoint fields [7] are available, the overall time of
each iteration is still large. The problem can however be
tackled by using linear reconstruction algorithms, which as-
sume that small perturbations of the material parameter map
translate to linear changes in the acquired measurements.
They produce images on a much shorter ammount of time,
allowing the technology to be used for monitoring several
physiological parameters such as cardiopulmonary functions,
brain ischeamia or hemorrage. Their main disadvantage is
a degraded spatial resolution when compared to non-linear
methods. However, they may be better suited for reconstruc-
tions based on experimental data because the measurement
noise and geometric uncertainty could prevent stable results
with iterative algorithms.

II. THEORETICAL BACKGROUND

A. Forward Problem

The MIT forward problem was addressed by a framework
based on the conformal Finite Integration Technique (cFIT),
using an adaptive and multi-level orthogonal dual-grid com-
plex (G, G̃). The governing equations are the Ampère’s law
and continuity equation, written in terms of the magnetic
vector potential and electrical scalar potential. The electrical
conductivity and magnetic permeabilitty are combined in a
single complex entity ζ = σ + iωε. Using FIT terminol-
ogy [8], the equations are respectively‹CM−1µ C Ûa+ iωMζ(Gφ+ Ûa) = ÛÛjs, (1)

S̃[iω(Gφ+ Ûa)] = 0, (2)

where C and G are respectively the discrete curl and gradient
operators defined in the main grid G, ‹C and S̃ the curl
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and divergence operators defined in the dual grid G̃, Ûa and
φ denote respectively the integral of the magnetic vector
potential and electric scalar potential along the edges or over

the cell volumes of G, and ÛÛjs reflects the integral of the
source current density, with angular frequency ω, along the
facets of G̃. Mµ and Mζ are diagonal matrices representing
respectively the magnetic permeability and complex electri-
cal conductivity distribution on the double grid complex. The
induced emf is computed by integrating the projection of the
magnetic vector potential over the sensing coil’s path.

B. Inverse Problem

The proposed linear image reconstruction algorithm is
based on [11] and the objective is to determine a recon-
struction matrix using a finite difference approximation to
the Fréchet derivative. The sensitivity of the measurements
is computed by inducing perturbations in the PEP maps
being estimated. These perturbations are carried out using a
spherical target, placed in several positions spread uniformly
across the space being estimated in order to avoid biased
reconstructions. The number of these positions should be
higher than the number of independent measurement data
points available. The reconstruction matrix is determined
as the one that minimizes the following quadratic norm
function,

f(R) = ||Xt −RYt||2, (3)

where R is the linear reconstruction matrix, Xt corresponds
to the horizontal concatenation of the perturbed maps and Yt

the corresponding measurements predicted by the forward
model. The size of Xt is N × N ′ and Yt is L × N ′,
where N is the number of parameters to be inferred, L
the number of measurements and N ′ the number of target
positions. Experimental measurement errors were simulated
by adding 5% Gaussian noise to all data. The solution for
R of equation (3) has the following expression,

R = XtYt
T (YtYt

T )−1. (4)

Increasing the number of target positions doesn’t actually
translate to a substantial increase in the resolution time
of (4), since the only time consuming step consists in the
computation of the inverse of a matrix whose size is only
dependent on the number of measurements. This makes the
implementation of this method in parallel computing highly
tempting as each position of the perturbation target can be
handled independently, therefore taking advantage of multi-
core CPU or GPU computing. The time limitation step thus
resides in the forward problem solver, which has already
been fairly optimized.

The single step Gauss-Newton (GN) method was also im-
plemented for cross-checking the results. It is an optimization
algorithm that minimizes the following error functional [2, 9]

ε(p) = ||Vm − F(p)||2 + α||L(p)||2, (5)

where F is a forward operator that maps the material
properties vector, p, onto virtual measurements, Vm is the
measurement data and L is the regularization matrix, which

in this paper consists in a discrete approximation of the
laplacian operator. α is the regularization parameter and p
corresponds to the vertical concatenation of the complex
conductivity and magnetic permeability vectors, such that
p = [ζ;µ]. The solution p that minimizes (5) has a closed
form given by [2, 9, 10]

δp = (STS+α2LTL)−1(ST (Vm−F(p))+α2LTLp), (6)

where S is the sensitivity matrix computed using an adjoint
field method as in [2, 7, 9]. Equation (6) is usually solved
by preconditioned conjugate gradient algorithms.

III. RESULTS

An eight coil system is employed to generate the mea-
surements required for image reconstruction. The coils are
arranged in a cylinder with 50 cm of diameter, with equal
angular spacing between them, and all of their axis belong to
the same plane. All coils have a radius of 3.5 cm, are 4 cm
long and have 8 windings equally spaced. In turn, each coil
acts as the source and the measurements are acquired by
the remaining ones. The number of positions for the training
target is 280, which corresponds to ten times the number
of linearly independent data points provided by this MIT
system.

A. Artificial Phantoms

In figure 1 the electrical conductivity map is reconstructed
and the electrical permittivity and magnetic permeability
are regarded as known parameters of equal value of the
free space properties. Both the developed algorithm and the
single-step GN method were used for reconstruction of two
spherical perturbations of 1.5 cm of radius and conductivity
of 1.5 S/m placed within a 0.5 S/m medium. The values
were chosen as such to be in the usual range of biological
tissues [12].

Both methods enable the 3D localization of the spherical
bodies. However, it is clear that the developed algorithm’s
reconstruction is more precise when compared to the single-
step GN method. The image is less blurry and the ringing
artifact, which corresponds to areas of opposite sign sur-
rounding the main reconstructed areas, isn’t as evident. The
image quality can be more accurately assessed by determin-
ing the error ||ptrue−preconstructed||/||ptrue||, being p the
distributed parameter map. This image error is 35.83% using
the single-step GN method and 20.51% using the developed
algorithm.

A more challenging reconstruction in which all PEP were
estimated was also carried out using the developed algorithm.
The same medium is employed but now four spherical
bodies are used, with the same diameter and conductivity
as previously, but now with relative electric permittivity
and magnetic permeability respectively equal to 1600 and
2. The results are displayed in figure 2, where only the
z = 0 plane is shown. The four objects are clearly identified
in all three maps, which is an amazing feature as this is
a linear reconstruction. The spherical inclusions closer to
the boundary of the medium have a worse reconstruction
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Fig. 1: Reconstructions of the electrical conductivity. Top
row: True map; Middle Row: Single-step regularized Gauss-
Newton reconstruction; Bottom row: Reconstruction using
the developed algorithm. The images are presented in the
y = 0 (left column) and z = 0 (right column) planes.

than the ones closer to the center. This non-uniform reso-
lution could perhaps be solved as in [11], by assigning a
wheighting function to each training target to counter the
higher sensitivity of the measured data to elements closer
to the boundary of the object, which pushes reconstructed
noise towards the boundary. The image errors for the three
PEP maps are 30.15% (conductivity), 69.97% (permittivity)
and 16.64% (permeability). The magnetic permeability map
is the one with highest resolution as this is the PEP that
affects the magnetic field the most. This is corroborated
by [9], where they concluded that the MIT inverse problem is
better posed for magnetic permeability reconstructions. The
electrical permittivity map is the one with worse resolution
and the one with the most image artifacts. This PEP is
related to the displacement currents within the object which
do not play in MIT a role as significant as the conductive
currents dictated by the conductivity distribution. Hence the
result is as expected, for the sensitivity of the measurements
to conductivity changes is much higher when compared to
permittivity changes.

B. Biological Phantoms

A conductivity model of the human head derived from
a high resolution magnetic resonance image was developed
and used to study the aplicability of the developed algorithm
in the clinical enviornment. A k-means algorithm was used

Fig. 2: Reconstruction of the passive electretic properties.
Top row: Conductivity maps; middle row: permittivity maps;
bottom row: permeability map. The left column represents
the original maps and the right column the reconstructed
ones.

to remove any noise outside the region of interest and after-
wards a statistical parametric mapping software developed
for MatLab was employed to perform the segmentation of
the brain tissue into white matter (WM), grey matter (GM)
and cerebrospinal fluid (CSF). By combining the resulting
binary masks with the denoised data, one was able to obtain
as well a mask for the skull voxels, which are modeled
as having the same conductivity as bone. Finally, all these
masks were combined and assembled after the assignment of
the respective tissue’s electric conductivity, which is 0.1 S/m,
0.16 S/m, 2 S/m and 0.02 S/m respectively for WM, GM,
CSF and bone at 1 MHz of frequency [12]. The magnetic
permeability is assumed constant and equal to that of free
space, and the electrical properties assigned are assumed
homogeneous and isotropic within each tissue. The resulting
model is presented in figure 3.

It’s composed by cubic voxels of 1 mm side length, which
leads to a total number of around one million voxels. A
FIT grid of this size is, however, impractible under an MIT
framework, as that would imply the resolution of multiple
linear systems of size at least three by three times that same
number, something that wouldn’t be computationally viable.
As such, the resolution was decreased five times and each
conductive grid element represents the mean value of the
complex conductivity contained within it.

The attempted reconstruction scenario consists in a simu-
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Fig. 3: Conductivity model of a human head. Four different
tissues are visible, white matter, grey matter, cerebrospinal
fluid and bone.

lated 8 ml subdural heamorrage, located in the right parietal
lobe. At the frequency of 1 MHz, the conductivity of blood is
0.8 S/m [12]. For the assembly of the reconstruction matrix
it is assumed that the outline of the head is known and
the same homogenous conductivity is assigned to all tissues.
Afterwards, 280 positions for the spherical perturbation are
scanned and the resulting maps and respective measurements
are arranged and used in equation (4). Since the projections
are taken only on a single plane, the estimation space was
restricted vertically to the lower and upper limits respectively
of -5 cm and 10 cm, which makes the number of estimated
parameters equal to 10232. The original and reconstructed
maps are presented in figure 4.

This is a very good result as it is a linear reconstruction of
a highly complicated conductivity distribution, severely ill-
posed as the number of parameters being estimated is 365
times larger than the number of available measurement data
points, and still, the shape and 3D location of the heamorrage
is reasonably accurate. The reconstructed conductivity values
are fairly close to those in the original map. The main
difficulty for reconstructing such distribution map lies in the
very high conductivity of the CSF, when compared to the
remaining tissues, and the fact that it lies near the boundary.

IV. CONCLUSIONS

A linear image reconstructed algorithm was developed
and tested. It allowed a reduction of 15% in the image
error when compared to the standard single-step GN method.
Reconstructions of single or multiple PEP maps are possible
through the proposed approach. The algorithm’s beahavior
under a simulated clinical scenario was considered very
promising and it is believed that it can be enhanced even
further by increasing the number of independent measure-
ments, as well as the number of target positions.
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