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Abstract— A novel spatiotemporal muscle activity imaging 

(sMAI) approach has been developed using the Extended 

Kalman Filter (EKF) to reconstruct internal muscle activities 

from non-invasive multi-channel surface electromyogram 

(sEMG) recordings. A distributed bioelectric dipole source 

model is employed to describe the internal muscle activity space, 

and a linear relationship between the muscle activity space and 

the sEMG measurement space is then established.  The EKF is 

employed to recursively solve the ill-posed inverse problem in 

the sMAI approach, in which the weighted minimum norm 

(WMN) method is utilized to calculate the initial state and a new 

nonlinear method is developed based on the propagating 

features of muscle activities to predict the recursive state. A 

series of computer simulations was conducted to test the 

performance of the proposed sMAI approach. Results show that 

the localization error rapidly decreases over 35% and the 

overlap ratio rapidly increases over 45% compared to the 

results achieved using the WMN method only. The present 

promising results demonstrate the feasibility of utilizing the 

proposed EKF-based sMAI approach to accurately reconstruct 

internal muscle activities from non-invasive sEMG recordings. 

I. INTRODUCTION 

Surface Electromyogram (EMG) technology provides a 
non-invasive way for rapid monitoring muscle activities that 
aids in the diagnosis of neuromuscular disease. However 
surface EMG signal is composed of the superimposed action 
potentials of many muscle fibers and is the general picture of 
muscle activation as opposed to the activity of only a few 
fibers as observed using an inserted needle electrode in 
intramuscular EMG, which limits its application in clinic [1]. 
Muscle activity imaging (MAI) technology has been 
developed to characterize the specific muscle groups which 
are responsible for the discharged surface EMG recordings to 
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overcome this limitation, and holds promise in advancing 
sEMG application in clinic. Most of traditional MAI 
technology is based on the spatial estimation approach [6, 7], 
and it suffers from limited imaging accuracy. A 
spatiotemporal muscle activity imaging (sMAI) approach is 
proposed in the present study using the Extended Kalman 
Filter (EKF) to accurately reconstruct internal muscle 
activities from non-invasive multi-channel sEMG recordings. 

II. METHODOLOGY 

In the forward solution, a distributed dipole source model 
is employed to model internal muscle activities [8], and a 
linear relationship between the source space and measurement 
space is established. In the inverse solution, an Extended 
Kalman Filter is employed to iteratively estimate the 
3-dimensional (3D) distribution of internal muscle activities 
from the noninvasive sEMG measurements throughout a time 
period.   

A. Distributed dipole source model 

The 3D internal muscle activity space is described using a 
distributed dipole source space model, in which we assume 
that the current dipoles are evenly distributed over a fixed 
lattice covering the 3D muscle fibers, and the direction of 
dipole moment is fixed along the muscle fiber direction for 
each dipole. In the present study, a total number of 2048 
(16×8×16) electric current dipoles is employed in the 
distributed dipole source space model. A total number of  225 
(15×15) surface EMG electrodes is assumed over a  planar 
skin surface which is 2 mm away from the muscle activity 
source space to record surface EMG signals (Fig. 1). The 
tissue between the muscle activity source space and the skin 
surface is assumed as a homogenous and anisotropic 
conducting volume limited by a plane (skin surface) of infinite 
extent [2]. The transverse and longitudinal conductivities of 
muscle are set as 0.063 and 0.378 s/m respectively and the 
conductivity of the skin and the tissue between skin and 
muscle is set as 0.063 s/m [3]. The relationship between the 
distributed dipole sources and the surface measurements can 
be described as 

 Φ(t) = A*J(t) 

where Φ(t) is a M×1 vector containing the surface EMG 
measurements at time instant t, and M is the number of 
recording sites. J(t) is a N×1 vector containing dipole current 
densities at N grid points in the muscle activity source space at 
time instant t. A is a M×N transfer matrix relating the dipole 
current densities and the surface EMG signals. 
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Figure 1.  Dipole source space and measurements. The nodes on mesh 

represent recording sites and the dots represent dipoles in source space. 

B. Extended Kalman Filter 

The Kalman Filter is a set of mathematical equations that 
provides an efficient recursive method to estimate the state of 
a process by minimizing the error covariance [4]. The 
Extended Kalman Filter is designed for the situation when the 
relationship between source space and measurement space or 
the prediction of state is nonlinear [5].  

A state-space model is developed in order to utilize the 
Kalman Filter to solve the ill-posed inverse problem in the 
proposed sMAI approach, and the state-space model is 
governed by the following equations 

 sk = ƒ(sk-1) + u k-1 

 Φk = h(sk) + v k-1 

where sk is the state at Mt time instant (N×Mt matrix) at step k, 

and is the amplitudes of dipoles in this case. ƒ is a processor 

which predicts states from previous states. Φk is the 

measurements at Mt time instant (M×Mt matrix) according to 

the state at step k. h is the linear operator defined in (1). uk-1 

and vk-1 are process noise and measurement noise respectively 

at step k-1, which are assumed as independent Gaussian white 

noise normally  distributed with zero mean and variances as Q 

and R. 

 P(u) ~ N(0, Q) ; P(v) ~ N(0, R). 

In the proposed sMAI approach, ƒ is a nonlinear processor 
developed based on exponential smoother defined as 

      {
            |          |             

            |          |            
 



                                           

                              

where z is the dipole index on muscle fiber direction, sz,k is the 
updated state at step k on position z, and sz,k-1 is the state at step 
k-1 on position z. (6) is a smoother only works on muscle fiber 
direction. 

      {
          |          |             

            |          |            
 



                                            

                                

where st,k is the updated state at step k at time instant t, and 

st,k-1 is the state at step k-1 at time instant t. (8) is a smoother in 

temporal space.  
The initial state is characterized using the weighted 

minimum norm (WMN) regulation method for sEMG 
measurements at each time instant [9]. The iteration in EKF 
process stops when the change of state began to increase. The 
change of state (CS) was defined as 

    |∑    ∑    |  |∑     |  

The final state is then utilized to reconstruct the internal 
muscle activities during the entire recording period which is 
tackled with the EKF. 

C. Computer Simulation 

Two active muscle fibers were assumed in the muscle 
activity source space with random position and length. One 
activity zone was assumed on each muscle fiber with random 
initial position, and muscle activities in the activity zone were 
simulated by 5 continuous current dipoles. The simulated 
muscle activity zones propagated along muscle fiber direction 
with a conduction velocity of 4 mm/ms [2] until they reached 
the edge of the assumed muscle activity space.  Surface EMG 
measurements were simulated by calculating the potentials at 
each recording site generated by the assumed internal 
activating dipoles through the tissue space at each time instant 
[2]. sEMG measurements for 5 sampling time points were 
employed in the present computer simulation study to 
reconstruct internal muscle activities.  

Both the localization error and overlap ratio are calculated 
to evaluate the performance of the proposed sMAI approach. 
The localization error is defined as the Euclidean distance 
between the geometric centers of simulated sources and 
reconstructed sources. In order to calculate the overlap ration, 
a 3×3×3 cubic is assumed for each simulated source dipole 
with the source dipole located at the center. The cubes of all 
the dipoles in the simulated muscle activity zone form a 
simulated muscle activity volume. The overlap ratio is 
calculated as the number of reconstructed dipoles which fall 
into the simulated muscle activity volume divided by the 
number of reconstructed dipoles.  

III. RESULTS 

A series of computer simulations was conducted to test the 
performance of the proposed EKF-based sMAI approach. The 
results achieved with the proposed EKF-based sMAI approach 
were also compared with the results achieved with the WMN 
method. 

Simulation results at a time instant are showed in Fig. 2a as 
a typical example. Results show that the localization error of 
the reconstructed sources during the iterations of EKF-based 
sMAI approach decrease by around 70% after the first 
iteration, while the overlap ratio of simulated sources and 
reconstructed sources increased to almost 3 times of the initial 
value. Then the localization error keeps decreasing until the 
4th iteration and increases slightly after the 5th iteration. The 
overlap ratio keeps increasing until the 2nd iteration and starts 
to decrease slightly at every iteration after that. In this case, the 
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iteration process should stop at the 4th iteration according to 
CS described in (9), and the results after the 4th iteration are 
used for comparison. Note that the localization error and 
overlap ratio at the initial state in Fig. 2a are actually for the 
reconstructed results achieved by the WMN method. We can 
see the EKF-based approach significantly improve the 
reconstruction accuracy compared to the WMN method.  

The average value of normalized localization errors and 
the overlap ratios at 30 time instants in all the 6 trails are 
compared for the WMN and EKF-based approaches and are 
summarized in Fig. 2b.  Results show that the average 
localization error decreases significantly from 1.37±0.34 mm 
to 0.89±0.23 mm (T-test, P<0.005, n=30), which is decreased 
by over 35% of the value in initialization. On the other side, 
the average overlap ratio increases significantly from 0.6±0.38 
to 0.88±0.15 (T-test, P<0.001, n=30), which is increased by 
more than 45% of the value in initialization.  

 

Figure 2.  The variation of localization error and overlap ratio in EKF from 

results at one time instant (a) and the comparison of average localization error 
and average overlap ratio between the results of WMN and the results of EKF 

(b). 

IV. DISCUSSION 

Preliminary results demonstrate the feasibility of utilizing 
the proposed spatiotemporal imaging approach to accurately 
reconstruct internal muscle activities from noninvasive 
surface EMG recordings.  

In proposed imaging approach, a new nonlinear state 
predictor, which is the most important step in the EKF, is 
designed specifically for muscle activity imaging approach. 
According to the propagating feature of muscle activities, 
potential continuity holds in both temporal space and spatial 

space along the direction of muscle fiber. Based on these 
electrophysiological features, the new state predictor is 
established by smoothing the state in temporal space as well as 
along muscle fiber direction. The smoothing coefficients are 
calculated based on exponential smoother to make mild 
changes in state, as described in (6) and (8). Although the 
prediction of state is mild, the results converged rapidly during 
iterations (Fig. 2a). The significant reduce of localization error 
and increase of overlap ratio (Fig. 2b) demonstrated in the 
simulation results indicate significant improvement on 
imaging accuracy achieved by using the new approach. 
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