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Abstract— The present study proposed the combined use of 

EEG and MEG data in a new sparse electromagnetic source 

imaging (ESI) technique, i.e., variation-based sparse cortical 

current density (VB-SCCD) method. Monte Carlo simulations 

were conducted to investigate the performance of the proposed 

approach in multiple extended brain activations (up to ten) that 

were randomly generated. Experimental EEG and MEG data 

from a face recognition task were further used to evaluate the 

performance of VB-SCCD. The present results indicate that the 

proposed approach can accurately reconstruct multiple brain 

activations and their spatial extents. The source imaging results 

from real data further demonstrate it is capable to recover 

networked brain activations involving multiple cortical regions, 

which are consistent with results from functional magnetic 

resonance imaging in same task paradigm. The present results 

further indicate the capability of the proposed approach in 

reconstructing deep brain sources and temporal dynamics of 

brain sources at millisecond resolutions. It thus suggests that 

sparse ESI using combined EEG and MEG is a promising 

technique probing detailed spatiotemporal brain activations. 

I. INTRODUCTION 

Electromagnetic source imaging (ESI) techniques based 
on noninvasive scalp electroencephalogram (EEG) and/or 
magnetoencephalogram (MEG) signals are able to achieve 
high spatiotemporal imaging of coordinated brain electrical 
activity [1]. It has millisecond temporal resolutions that allow 
explorations of dynamic neural processes and their causal 
connectivity, while it also provides source estimates of 
localized spatial extents with crucial information regarding 
where in the brain such processes take place. This technique 
has been widely applied to study human brain functions in 
both normal and diseased conditions. However, compared 
with other noninvasive neuroimaging technology, such as 
functional magnetic resonance imaging (fMRI), its capability 
in imaging complex brain networks is still very limited.  

One way to enhance spatial resolution and localization 
characteristics of ESIs is to combine EEG and MEG data, 
which have different sensitivities to different brain sources. 
Due to its biophysical property, MEG is mainly limited by less 
sensitivity to radially oriented cortical sources [2]. Since deep 
brain sources are nearly radial, the sensitivity of MEG to deep 
sources drops rapidly [3]. Alternatively, EEG reflects current 
sources of all orientations. However, when field gradient 
distributions are concerned, electrical field gradient is 
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smoothed by low-conductive skull, which makes EEG signals 
more vulnerable to noise than MEG. Since EEG and MEG 
provide complimentary information regarding brain 
activations, combining multi-modal measurements in ESI may 
achieve better detection and inverse reconstructions of brain 
sources, especially for complex networked activations. 

Previous studies have reported several ESI methods to 
integrate EEG and MEG for brain source reconstructions. 
Methods involving multiple steps were proposed to localize 
tangential and radial components of sources separately [4-5]. 
In contrast, most methods [6-9] implemented combined 
analysis of EEG and MEG yielding estimations of all source 
parameters at the same time. Both simulations [6,8] and 
experimental data [6-7] obtained from these studies have 
indicated superior performance using combined EEG and 
MEG data compared to EEG or MEG data alone. However, 
most of these studies focused on cases involving only one or 
two brain sources. Yet a complex network with multiple 
sources has not been systematically investigated and it is 
unknown whether the advantage of multimodal integration 
may yield success under such complicated brain dynamics. 

Recently, we have developed several sparse ESI (sESI) 
techniques using distributed source models [10-11], which 
reconstruct EEG/MEG sources via exploring sparseness in 
solutions. Based on compressive sensing (CS) theory [12], we 
have proposed a novel sESI technique, i.e., variation-based 
sparse cortical current density (VB-SCCD) method [11], to 
reconstruct brain sources with the use of sparse 
representations in a transformed domain. The performance of 
this new technique has been demonstrated in localizing 
multiple distributed brain sources and reconstructing their 
cortical spatial extents using EEG [11] and MEG [13-14]. 
Thus we hypothesize that combining EEG and MEG in 
VB-SCCD can further improve its performance.  

To test this hypothesis, in the present study, we developed 
an approach to simultaneously analyze EEG and MEG data in 
VB-SCCD. We conducted a systematic Monte Carlo 
simulation that involved different numbers of sources (i.e., 1, 
2, 5 and 10). Particularly, we investigated brain sources of 
fairly large size (~8 cm

2
). We also examined the performance 

of the approach in imaging complex networked brain activity 
from experimental data in a face recognition task. 

II. METHODS 

A. Simultaneous EEG and MEG Forward Model 

Let the vector s  represent N elemental dipole moments in 

cortical current density (CCD) model. Vectors v  and b  

denote potentials and magnetic fields measured in EEG and 

MEG, respectively.  
Nvvvv

aaaA
,2,1,

,,,   is the gain matrix 

calculated by boundary element method (BEM) and each 
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column specifies potentials on electrodes from a unity dipole, 

while  
Nbbbb

aaaA
,2,1,

,,,   is the corresponding gain matrix 

for magnetic fields. Both 
v

n  and 
b

n  denote background and 

measurement noises in EEG and MEG. Then the forward 
problem can be expressed in the following vector notation: 


vv

nsAv  and
bb

nsAb   

In order to combine EEG and MEG, they have to be 
converted into a common basis. The signal-to-noise ratio 
(SNR) transformation is used as proposed in previous studies 
[6], which converts all channel data into the SNR domain and 
makes both EEG and MEG data unit-free measurements. In 
details, standard deviations σ of noise are estimated for 
EEG/MEG at single channels and then EEG/MEG data are 
normalized by their individual standard deviation of noise: 


ivjiji

vv
,,,

ˆ  and
ibjiji

bb
,,,

ˆ  ,
 

where i indicates the i-th channel, j indicates the time point. 
EEG/MEG gain matrices are also adjusted accordingly: 


iviviv

AA
,,,,,

ˆ 


 and
ibibib

AA
,,,,,

ˆ 


  

Finally, the combined forward problem can be expressed as: 
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where A is the combined gain matrix. 

B. VB-SCCD Algorithm 

The optimization problem proposed to solve in VB-SCCD 
is developed based on the theory of sparse source imaging 
[10]. It can be mathematically stated as 

 
21

min sAmtosubjectsV  

where V is a matrix operator to obtain variation maps of 
cortical current density distributions. The variation vector is 
thus defined as sV . The penalty function is designed to 

minimize the L1-norm of variation of inverse solutions, which 
is equivalent to maximize the sparseness in the variation 
domain. Each element in this vector represents a coefficient 
within the variation map over a triangular edge and its value 
indicates current density difference between two triangular 
elements sharing the same edge (see [10] for details). 

Equation (5) is solved by the second-order cone 
programming [15]. The regularization parameter β can be 
estimated by applying the discrepancy principle [16]. We 

choose it to be high enough so that the probability of 
2

n , 

where sAmn  , is small. When noise is Gaussian white, 

  2

2

2
/1 n , where σ

2
 denotes noise variance, has the m

  

distribution, i.e.,   22

2

2
~/1

m
n  . In practice, the upper bound 

of 
2

n , i.e., β, is selected such that the confidence interval [0, 

β] integrates to a 0.99 probability [10]. In the analysis of real 
data, noise data can be selected from recordings considered as 
signal free (e.g., pre-stimulus data). 

C. Monte Carlo Simulation 

Accuracy of inverse solutions is location-dependent 
[6,17], since EEG/MEG has various sensitivities to sources at 
different locations with different orientations. Monte Carlo 

simulations with a large number of randomly sampled source 
locations were thus performed. Specifically, cortical sources 
were generated by randomly selecting seed elements on the 
CCD model and gradually growing into patches by iteratively 
adding neighboring elements. Dipole moment on each triangle 
was computed as the multiplication of triangular area and 
dipole moment density (i.e., 100 pAm/mm

2
). To evaluate the 

performance of the proposed approach in reconstructing large 
cortical sources, we simulated source sizes to be ~8 cm

2
 (7.83 

± 1.11 cm
2
). Different brain activities were simulated with 

different number of cortical sources (i.e., 1, 2, 5, and 10). 
Simulations were repeated for 200 times to cover most parts of 
the brain in this random sampling procedure. Metrics, receiver 
operating characteristic (ROC) curve and area under the ROC 
curve (AUC), from detection theory [18] were used to 
evaluate performance of VB-SCCD. 

The CCD model used in simulation was generated by the 
BrainSuite software [19], which segmented the interface 
between white and gray matters from a human head magnetic 
resonance imaging (MRI) data. The volume conductor was 
modeled by a three-shell boundary element model with three 
major tissues (the scalp, skull, and brain) of different 
conductivity (0.33/Ω.m, 0.0165/Ω.m, and 0.33/Ω.m) [20]. 
EEG electrode locations and MEG sensor locations and 
orientations were adapted from realistic EEG and MEG 
systems. For EEG, 120 channels were selected from a realistic 
128-electrodes EGI system (Electrical Geodesics, Inc., 
Eugene, OR) by removing face electrodes. For MEG, there 
were 151 MEG sensors from a 151 channel CTF Omega 
system. Simulated EEG/MEG data were then contaminated by 
real noise recorded from a person in resting conditions and 
calibrated to a 10 dB SNR. 

D. Experimental Protocol and Data Analysis 

To evaluate the performance of the proposed approach 
with empirical data, we performed VB-SCCD analysis on a 
face processing event-related potentials (ERPs) and fields 
(ERFs) data. Experimental details and the full dataset can be 
found at www.fil.ion.ac.ik/spm/data/mmfaces.html. Briefly, 
EEG and MEG data were recorded in a subject performing a 
face recognition task [21]. The subject made symmetry 
judgments on faces and scrambled faces, which were 
presented every 3.6 s and each stimulus lasted for 0.6 s. EEG 
data were acquired on a 128-channel ActiveTwo system, 
sampled at 2,048 Hz, while MEG data were sampled at 625 
Hz from a 151-channel CTF Omega system. Epochs were 
created from -200 ms to 600 ms for both EEG and MEG and 
then averaged to produce event-related data. The subject's 
T1-weighted MRI was obtained in a 1.5T Siemens Sonata 
with voxels of 1x1x1 mm

3
, using a whole body coil for RF 

transmission and an 8-element phased array head coil for 
signal reception. The registration was performed among 
subject’s head shape, EEG electrode locations, and MEG 
sensors using a surface-fitting algorithm [22]. 

I. RESULTS 

Fig. 1 shows the AUC values for different number of 
cortical sources (i.e., 1, 2, 5, and 10) using combined EEG and 
MEG data. Multiple sources up to ten were active. Also note 
that the sources were simulated to be of fairly large sizes (7.83 
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Figure 3.  Illustration of four examplar reconstructions in different  

numbers of sources (1, 2, 5, and 10). Two different views are provided for 

the example of ten sources. 

 

± 1.11 cm
2
). As indicated by the general trend in Fig. 1, when 

the number of sources increases, the AUC metric decreases. 
However, the overall reconstruction accuracy in these 
conditions is considered high since most of AUC values are 
higher than 0.8 [18], even when there are ten simultaneously 
activated and randomly located sources. 

Examples of 
reconstructed sources 
are illustrated in Fig. 
2 in reference to 

corresponding 
simulated ones for 
different number of 
sources. These 

reconstructed 
distributions were 

uniformly 
thresholded at 20% of 
their own maximal 
values. When there 

are only a few simulated sources (1 or 2), the reconstructed 
distributions are almost exactly recovered in terms of location 
and spatial extent. When the number of sources increases to 
five, all cortical sources can still be resolved, and their 
localizations are accurate. Meanwhile, these sources start to 
exhibit larger extents than simulated ones under 20% 

thresholding. Notably, when the number of sources to 
reconstruct is ten, the reconstructed cortical sources have 
consistent distributions and many closely located sources are 
still able to be resolved, while more cortical sources have 
enlarged spatial extents. Since the chance for randomly 
selected sources being close becomes higher when the number 
of sources increases, some of the closely located sources may 
be fused. These examples demonstrate the remarkable 
resolvability of VB-SCCD using combined EEG and MEG 
data in localizing multiple sources (up to 10). The reduced 
performance for increased number of sources is also 
suggested in these examples as shown in Whisker plots of 
AUC values (Fig. 1). 

Results from experimental data in a face recognition task 

are shown in Fig. 3. Averaged event-related MEG and EEG 
data in face conditions are plotted, showing the characteristic 
positive peak P100 at ~100 ms and the negative peak N170 at 
~170 ms. The spatiotemporal dynamics of underlying brain 
activities are presented by reconstructing the sources at 
multiple consecutive time points from 135 ms to 195 ms in 
intervals of 10 ms focusing on N170 component. Each 
individual cortical map was uniformly thresholded at 30% of 

its own maximal value. Dominant activities are observed in 
the bilateral fusiform and lateral ventral occipital regions, 
which start early (i.e. 145 ms). Brain areas then show 
significant activities within the frontal lobe including the 
medial superior frontal gyrus, orbital part of inferior frontal 
gyrus, and medial orbitofrontal gyrus at relatively late time 
(e.g. 165 ms) (Fig. 3). These observations are consistent with 
the fMRI data reported in [21] in terms of locations. The 
results further indicate the sequence of multiple brain 
activations involving multiple cortical regions due to the high 
temporal resolutions of EEG and MEG data. 

II. DISCUSSION 

In the present study, we demonstrated that a new sparse 
ESI technology (i.e., VB-SCCD) is able to reconstruct 
complex brain activations (up to ten sources) via combining 
EEG and MEG data. Reconstructed cortical brain sources in 
both simulations and experimental data provided not only 
precise source locations, but also accurate source spatial 
extents. The present experimental results further suggest that 
VB-SCCD with combined EEG and MEG data is promising to 
noninvasively estimate multiple brain activations as well as 
their temporal dynamics. 

Our previous investigations [11,14] examined the 
performance of VB-SCCD using EEG- or MEG-alone data 
and compared with other widely used ESI techniques, e.g., 
weighted minimum norm estimate (wMNE) [23] and cortical 
low resolution electromagnetic tomography (cLORETA) 
[24]. Although VB-SCCD showed superior performance than 
other two techniques, the AUC metric in conditions with 
multiple sources evidently dropped from that of single source 
using single-modality data. However, our present study 
demonstrated that, using EEG and MEG together in 
VB-SCCD, the performance of VB-SCCD in conditions with 
two sources is as good as that in condition with single source. 
Furthermore, at conditions of more number of sources (five or 

 

Figure 1.  Whisker plots of AUC metric 

values for VB-SCCD using EEG+MEG with 

different numbers of sources (1, 2, 5, and 10). 

  

Figure 2.  Dynamic patterns of source reconstructions within P100/M100 

and P170/M170 components from a face recognition task. 
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ten), AUC still maintains above 0.8, which is considered high 
[18]. The performance of VB-SCCD with combined EEG and 
MEG data at conditions with five or ten sources is even better 
than most of investigated methods with single-modality data 
in conditions of small number of sources. These results 
strongly suggest the advantage of integrating complementary 
information of EEG and MEG in inverse source 
reconstructions. Particularly, such advantage was fully 
utilized in VB-SCCD which, based on the CS theory, was 
especially suited for handling increased independent 
measurements. 

A Monte Carlo protocol with the number of sources up to 
ten was exploited in our present study, which is one of the few 
EEG/MEG studies, to our knowledge, using randomly 
generated multiple source (more than five) schemes [17]. 
Despite the large number of sources and the fairly large size of 
sources, overall the present simulation data suggest that 
VB-SCCD is capable of reconstructing complex cortical 
activations. The results from experimental EEG/MEG data in 
a face recognition task also demonstrated a consistency 
between source imaging results and activations obtained from 
fMRI data [21]. It is important to note that experimental 
source imaging results indicate multiple activations in 
different cortical regions at each time instant, which 
demonstrates the capability of VB-SCCD with combined EEG 
and MEG data in reconstructing complex brain activations in 
real data. Furthermore, reconstructed cortical sources involve 
not only areas close to epicortical surfaces (e.g., frontal 
cortex), but also deep areas (e.g., fusiform regions), which 
demonstrates the capability of the proposed approach in 
recovering deep brain sources that is usually much more 
difficult than superficial brain sources. 

In the present study, sources of fairly large sizes, i.e., (~8 
cm

2
, were investigated. This further challenges the 

performance of ESI techniques in addition to large number of 
sources. However, sources of large size are commonly 
observed in brain activity under various tasks, e.g., the face 
recognition task examined here, and in many neurological or 
psychiatric disorders, e.g., the epilepsy. Nonetheless, the 
VB-SCCD method with combined use of EEG and MEG data 
can achieve accurate estimates of source locations and 
extents. Our results strongly suggest that the sparse ESI 
method VB-SCCD using combined EEG and MEG is a 
promising technique that can probe detailed spatiotemporal 
processes from complex and dynamic brain activity, and can 
be applied noninvasively to study large-scale brain networks 
of high clinical and scientific significance.  
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