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Abstract— We present preliminary results on the use of
Bayesian-network (BN) structure learning algorithms for de-
ciphering dependencies from amongst different fetal heart rate
(FHR) features collected from a real database. We used a
greedy search-and-score procedure known as the K2 algo-
rithm for the estimation of the BN structure. The database
consists of a collection of discrete-valued features quantifying
presence of morphological changes as prescribed by expert
guidelines (updated by the National Institute of Child Health
and Human Development (NICHD)) and implemented as rule-
based programs. We compare the results of structure learning
to the expert-guided structure and use decision functions for
classification using posterior probabilities. It was found that
the BN estimated from structure learning algorithms had
comparable classification performance, but fewer edges, leading
to more efficient characterization of conditional probability
tables (CPD’s). Moreover, structure learning algorithms offer
a method of learning novel correlations between FHR features
that may be exploited for automatic categorization.

I. INTRODUCTION

Computer-aided categorization of fetal heart rate (FHR)

records has yet to be translated effectively from the realm

of academic research to clinical applications. In the labor

room, visual assessment of FHR tracings is very important

since fetal oxygen inadequacy has a direct effect on the FHR.

Purely visual assessment of FHR segments suffers from high

intra- and inter-observer variability [1], leading to higher

rates of caesarian sections and increasing litigation costs.

Several attempts have been made to standardize the human

interpretation of FHR and uterine-pressure (UP) signals, such

as those in [2]. Computer-aided diagnosis is an attempt to

solve such problems using techniques of machine learning.

In a previously published paper [3], we demonstrated the

use of simple statistical metrics to evaluate relevant feature

values from FHR/UP data. This was followed by coarse

graining of the continuous-valued features into qualitative

categories such as, say, “Absent variability” or “Presence of

recurrent decelerations,” and categorization of the feature set

using NICHD rules [2]. This is a rule-based categorization

approach similar in principle to the Oxford Sonicaid system

[4] and the SisPorto system [5]. As such, it precludes the

calculation of confidence measures for making decisions.

Other sophisticated methods for FHR classification include

the use of neural networks [6], particle swarm optimization
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[7], and support vector machines [8]. In previous studies, we

developed a Bayesian network (BN) formulation to integrate

the features from our expert system (ES) into a probabilistic

framework. A BN [9] is a specific type of graphical model

in which known (or hypothesized) causal relationships be-

tween nodes can be represented as conditional probability

relationships. Edges between the nodes can be endowed with

directions representing the flow of information from one

node to the other. One well known use of BNs for medical

diagnosis is the Quick Medical Reference (QMR) system

[10], which has more than 4000 observable nodes and 600

unobservable nodes representing the presence or absence of

specific diseases and their symptoms.

Our original BN structure was learnt entirely from expert

guidance and can be interpreted easily. However, expert

guided structure may not be the best choice in terms of

classification performance or elicitation of the most relevant

causal dependencies. There exists a very rich literature on

the problem of efficient Bayesian structure learning methods,

such as those developed in [11] (K2 algorithm) and in

[12] (Markov chain Monte Carlo methods). For the current

problem, we have used the K2 method to get an accurate

representation of the probabilistic dependencies between

FHR features described earlier, based on real-data evidence.

Using this learnt structure, one can learn conditional prob-

ability table (CPT) parameters using traditional Bayesian or

maximum likelihood techniques. Then, one can also get the

posterior probabilities of the “class” variable conditioned

on the instantiations of the attribute variables. This can

be used as classifier decision function. Though there exist

many other sophisticated structure learning techniques for

such applications, our purpose here is not a comparison

of these techniques, but a demonstration that using such

algorithms can tell us more about real FHR data than just

expert guidance.

In the sequel, in Section II-A we present the K2 structure

learning algorithm, in Section II-B, the ES features, and in

Section II-C, the classification procedure. Results of classifi-

cation performance using Leave-One-Out (LOO) procedure

are provided in Section IV. We conclude the paper with a

discussion of the results, and possible future work in Section

V.

II. BAYESIAN NETWORK FORMULATION

The BN consists of two sets: a set of nodes U and a set

of edges E. For the current application, we denote the N

features extracted from the data set as random variables Xi,

with i ∈ {1, 2, . . . , N − 1}. The set U = {X1, . . . , XN},
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contains the random variables representing the features and

an additional variable representing the “true” fetal state

(equivalent to the “class” variable) as labeled by a physician

or some other objective diagnostic procedure. We refer to

these variables as nodes of the graph. For full description of

the graph, we also need the set of directed edges E, which

represent conditional dependencies between the nodes. Thus,

the graph is formally denoted by G = (U,E). For every pair

of variables connected as Y → X , Y is called the parent of

X , and X is the child of Y . Each feature Xi has a range

of instantiations {xi,1, . . . , xi,k, . . . , xi,ri}, where ri is the

number of possible instantiations for that variable. For graph

structure G, the set of parents of node Xi is denoted YG
i

and this collection of variables can take values from the set

{yG
i,1, . . . ,y

G
i,j , . . . ,y

G
i,qG

i

}, where qGi is the product of the

cardinalities of all the variables in YG
i .

The advantage of using BNs stems from the fact that given

a specific BN structure, the joint probability distribution over

all the nodes of the graph factorizes as

P (X1, . . . , XN |G) =

N∏

i=1

P (Xi|Y
G
i ). (1)

This enables very efficient characterization of the probability

distribution of the features since the number of parameters

can be greatly reduced when the conditional independencies

encoded in the BN structure are taken into account. In

addition, structure elicitation presents a precise method of

detection of (possibly) causal dependencies between the

various variables represented on the graph.

A. BN structure learning

It is well known that learning the structure of any general

BN is NP-hard since the number of possible structures

increases super exponentially with the number of nodes in

the network. Thus, a variety of search heuristics have been

developed to address this problem. In the current work, we

focus on the well-known K2 algorithm from [11].

The K2 method is a conceptually simple greedy hill

climbing method for searching the space of directed acyclic

graphs (DAGs). The method is constrained by a user-input

ordering of the nodes, and it maximizes a chosen scoring

metric γ (described below) that captures how well the DAGs

represent the observed datasets. The input node-ordering Φ
reflects the user knowledge of the total node ordering and

not individual subgraph structure.

Initially the algorithm assumes that none of the nodes have

any parents and calculates an “empty” score γ(G) for the

graph G having no edges. Thereafter, for every node Xi ∈ Φ,

the algorithm searches for the single best parent Y from the

set Φ
−i (consisting of all nodes preceding Xi in the total

ordering) that, when connected to the node Xi, provides the

greatest increase in γ. If it finds no such parent, it stops

and goes to the next node in Φ. Otherwise, it (a) updates

the graph G to have the edge Y → Xi and (b) restarts

the search for other possible Xi parents. The procedure is

repeated until all nodes have been explored. Since the total

ordering is provided, the algorithm does not need to check

for graph acyclicity at each step. We note that the cost of

using this efficient heuristic is that the learnt BN structure is

significantly influenced by the choice of topological ordering,

and thus susceptible to bias. However, since the purpose is

not to replace expert guidance but merely to refine it, we

feel the benefits of the algorithm outweigh the costs.

There are several choices for the score function as re-

viewed in [12]. Since we used Dirichlet priors for the discrete

features, we employed the Bayesian scoring criterion γ(G) =
P (D|G) [13]:

P (D|G) =

N∏

i=1

qG
i∏

j=1

Γ(NG
ij )

Γ(NG
ij +MG

ij )

ri∏

k=1

Γ(αG
ijk + cGijk)

Γ(αG
ijk)

, (2)

where D is the set of observed data values, αG
ijk is the Dirich-

let parameter associated with the event {Xi = xi,k|Y
G
i =

yG
i,j}, NG

ij =
ri∑

k=1

αG
ijk, cGijk is the number of data cases in

which node Xi takes the value xi,k and Xi’s parents take the

value yG
i,j , and MG

ij =
ri∑

k=1

cGijk. Since this scoring criterion

decomposes into local frequency computations for each node,

it is computationally quite efficient.

B. FHR Features

In order to stay close to physician guidelines, we re-

stricted our feature set to those features recommended by

the standard guidelines [2]. We have described the software

implementation of these feature extraction techniques in

a previous paper [3], and provide only brief descriptions

here. In the following list, we represent the FHR features

as random variables, and provide the range of possible

instantiations for each of them:

1) Baseline FHR B ∈ {Bradycardia, Normal, Tachycar-

dia},

2) Baseline Variability V ∈ {Absent, Minimal, Moderate,

Marked},

3) Presence of Accelerations A ∈ {No, Yes},

4) Presence of Decelerations D ∈ {No, Yes},

5) Presence of Recurrent Decelerations Dr ∈ {No, Yes},

6) Presence of Early Decelerations De ∈ {No, Yes},

7) Presence of Late Decelerations Dl ∈ {No, Yes},

8) Presence of Variable Decelerations Dv ∈ {No, Yes},

9) Presence of Prolonged Decelerations Dp ∈ {No, Yes},

10) Presence of Recurrent Early Decelerations Dre ∈ {No,

Yes},

11) Presence of Recurrent Late Decelerations Drl ∈ {No,

Yes}, and

12) Presence of Recurrent Variable Decelerations Drv ∈
{No, Yes}.

The fetal state random variable S can take values from the

set {1, 2, 3}, which correspond to the subjective assessments

{Normal, Indeterminate, Abnormal}.

The expert-guided BN structure is provided in Figure 1.

The fetal status S is assumed to have a direct causal effect

on all the “symptom” variables {B, V,A, . . . ,Drl, Drv}.
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Fig. 1. Expert-guided BN structure for categorization of FHR features.
The fetal status S has a direct causal effect on all the other variables.

The features B, V,A and D are pairwise conditionally

independent given knowledge of S. In addition, we have

8 more variables representing deceleration types that are

directly dependent on the presence of decelerations. For

instance, if D takes the value “No”, then all the other

deceleration variables have to take the value “No”; however,

if D = “Yes”, then it is not necessary that, say, recurrent

decelerations are also present. The directed edge D → Dr

encodes this intuitive notion.

C. FHR classification using BN

The CPTs for each parent-child pair are learnt from the

training set of feature instantiations using maximum likeli-

hood frequency updates. For any test data set di whose status

variable S is unknown, we can derive the marginal posterior

distribution for the Si conditioned on knowledge of the

features using simple sum-product techniques [14]. A MAP

criterion is used to find the Si instantiation si ∈ {1, 2, 3}
having the highest marginal probability mass. This is taken

to be the classifier output for di.

III. DATA

The program was tested on a database of 830 20-minute

FHR records collected from 9 subjects during the antea-

partum period at the Stony Brook University Medical Center.

All consent and approval guidelines were followed rigor-

ously. The FHRs were continuously monitored using the

Doppler technique via GE Corometrics devices. The usual

method for extraction of FHR from the Doppler signal

is to use autocorrelation functions to detect the periodic

movements of the heart valves. Although this does impose

some restrictions on the detection of short-term variability,

for our purposes it was deemed to have sufficient resolution

for effective tracing characterization.

Prior to carrying out feature extraction, FHR preprocessing

was done to remove various artifacts including ones due to

movement as described in [3]. Each record was indepen-

dently labeled as category 1, 2 or 3 by a physician who had

access only to the raw and preprocessed noise-free versions

of the FHR. It was observed that for some files heavily

corrupted by tracing noise and for those dominated entirely

by episodic variations, our ES would not be able to get values

S B

V AD

Dr

De

Dl

Dv

Dp Dre

Drl

Drv

Fig. 2. BN structure learnt from the K2 algorithm. The fetal status S has
a direct causal effect on only {V,D,A}.

TABLE I

CONFUSION MATRIX FOR BN CLASSIFICATION OF 754 REAL DATA SETS.

Expert BN K2 BN

1 2 3 1 2 3

Physician 1 182 118 0 179 121 0

Labeling ↓ 2 91 356 1 91 356 1

3 5 1 0 5 1 0

of certain features like variability or episode locations. For

this study, we ignored such data sets from the training and

testing procedures. We were then left with 754 out of 830

20-min traces from the original database.

IV. RESULTS

Classification performance was analysed using Leave-

One-Out (LOO) procedures, i.e., for each data set di in the

record database D, we learn the CPTs from the database

D
−i consisting of all data sets except di. However, structure

learning was done using the entire data set D in order to

ensure that we obtained exactly one learnt structure Ĝ (as

opposed to |D
−i| different structures) to compare against the

expert-guided network G.

We first present the result of structure learning using the

K2 algorithm on the 754-strong database in Fig. 2. The

differences between Ĝ and G (Fig. 1) are discussed further in

Section V. The total number of edges in Ĝ is 16, as opposed

to 23 in G. It was seen that for this particular database, the

S node has a causal effect only on {V,D,A} and the node

B representing the average baseline value for the record is

not connected to any other node in the network. As a result

of the reduction in the number of edges, the total number

of independent conditional probability distribution (CPD)

parameters decreased from 89 for G to 60 (or 59 if we ignore

the B node from the structure entirely) in Ĝ. In Table I, we

present confusion matrices for classifier performance when

using posterior probabilities calculated by the expert and

K2 BNs. Both networks yield similar performances (≈80%

sensitivity and ≈ 60% specificity, with classifier outputs of

categories 2 or 3 treated as “positive” detections).
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V. DISCUSSION

Obstetric care providers use the Doppler ultrasound mon-

itors to get continuous recordings of FHR. Standardized

clinical guidelines are used to interpret patterns of specific

morphological features in the FHR signal such as deceler-

ations (abrupt or gradual decreases in heart rate) or loss of

variability (variation around a “baseline” FHR signal). In

this study we developed a method to (a) incorporate these

features in a BN formulation, (b) to learn network structure

from a given set of observed data, and (c) to measure

classification performance using posterior probabilities. Al-

though BN structure learning has been widely used in diverse

fields such as fault diagnosis, image processing, and medical

diagnosis, to our knowledge, this is its first application

specific to FHR. The K2 structure learning technique reduces

the redundancy in the graph and the total number of CPD

parameters, while maintaining the same level of classification

accuracy. This is an advantage in terms of efficiency, and it

suggests that parameter learning from new data sets using

the learnt structure may be more robust.

Prior to structure learning, we had prediscretized the

FHR features. Although in principle, continuous features can

provide better feature resolution, we worked with discrete

features for several reasons including the facts that (a) our

feature discretization [3] is very similar to clinical feature

definitions as described in [2] and routinely used in obstetric

care centers, (b) using continuous features in the BN requires

the introduction of (possibly non-Gaussian) parametric con-

tinuous distributions, necessitating the learning of many more

hyperparameters, and (c) structure learning with continuous

features is considerably more difficult, especially when the

data lack diversity.

With the proposed approach, we are able to learn new

correlations (or the lack thereof) present in the data. In

Fig. 2, one can see that the variable B has no parents or

children. Indeed, it was seen that for this database, the vast

majority of FHR recordings (741 out of 754) had Normal

baseline FHR (between 110 and 160 bpm), only 12 had

tachycardic baseline (greater than 160 bpm), while only

one data set had bradycardic baseline. This implies that for

nearly all possible instantiations of its possible child-nodes,

the baseline B node takes the same value; thus, the CPD

remains indifferent to the value of B. Similar arguments in

the case of the nodes De and Dp justify their disconnection

from the “class” variable S. Another prominent difference

is the inclusion of new edges Drl → Drv and Dl → Dv ,

which suggests that there are strong correlations between

the existence of late and variable decelerations. Moreover, in

Ĝ the “class variable” S is only connected to the variables

{V,D,A}. This set is also S’s Markov blanket, suggesting

that for classification via evidential reasoning, it may only

be required to look at {V,D,A} instead of the entire gamut

of possible morphological “symptoms”. However, this needs

to be tested with more datasets.

Other concerns with this approach are being addressed

in our ongoing research. For a small 30-strong test subset

of FHR data recordings, it was found that physician labeling

changed in as many as 16 cases by simply shuffling the order

in which the experts were shown the recordings. One possible

way to deal with this intra-observer variability would be

to introduce more features representing independent tests of

fetal health (e.g., umbilical pH values). Another problem is

the extreme rarity of FHR tracings showing true fetal distress

(category 3), which in the current database compose only

0.8% of the total observed database. This lack of diversity

leads to poor performance when classifying category 3

recordings. Clearly, testing on more and more data is of

paramount importance. A significant aim of future study is

to increase the specificity of classification, since a 40% false-

positive rate is prohibitively high for clinical use. Other goals

include the integration of different statistical measures for

assessing variability, information from the uterine pressure

signal, efficient incorporation of continuous features into

the BN, and conducting unsupervised clustering of FHR

recordings.
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