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Abstract—This paper presents a new classification method for 
physical activity assessment, based on sparse representation. This 
method bypasses the need for feature extraction and selection 
that is typically involved for activity classification, and classifies 
activities using raw sensor signals directly. Higher discriminative 
power than that from the conventional k-nearest neighbor 
algorithm has been demonstrated through experiments 
performed on 105 subjects. 

I. INTRODUCTION 

CCURATE and reliable assessment of human physical 
activity (PA) is important for understanding individual 

behavior and quantifying the impact of PA on disease, as well 
as for examining determinants of PA in different populations. 
Physical activity by definition refers to bodily movement 
generated by skeletal muscle, and engaging in physical 
activities on a regular basis, such as walking, running, sports, 
household activities, is effective for improving human health, 
fitness and quality of life [1].  

With the advancement of wearable electronics, body-worn 
activity monitors, consisting of either single or multiple 
accelerometers, or sensors of multiple modalities, have 
emerged as the technique of choice for PA assessment under 
free-living environments [2]. Combining machine learning or 
pattern recognition techniques to process these data can detect 
activity types and patterns of physical activity as well as 
intensity and energy expenditure [2].  

Extracting and selecting the most relevant and informative 
features from the raw sensor signals has always been one of 
the typical and key problems in PA assessment and in 
machine learning/pattern recognition in general. An 
appropriate feature set is usually selected based on past 
experiences/literatures, or through certain feature selection 
algorithm performed on a large set of features. For example, 
in a previous study [2], a set of 63 features typically used in 
other PA studies, were pre-determined, and a subset of the 
features were then selected for minimum redundancy and 
maximum relevance by the mRMR algorithm [3]. Other 
feature selection algorithms, such as greedy forward search 
[4], floating search algorithm [5], etc., have also been used for 
feature selection. Such feature selection algorithms are 
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suboptimal due to the requirement of a certain predefined 
“large” feature set. Since hundreds and thousands of features 
can be extracted out of a signal, it is almost impossible to 
select “optimal” feature set.  

Recent development on the theory of sparse signal 
representation and compressive sensing [6], [7] has provided 
new stimulus to addressing the problem of feature selection 
and developing an alternative approach to classification, e.g., 
for face recognition [8] and fMRI data analysis [9]. In this 
presented study, a new classification method based on sparse 
representation for PA assessment is presented. Unlike the 
methods described in [10], the presented method bypasses the 
procedures for feature extraction and selection, and performs 
activity classification using raw sensor signals directly. The 
performance is experimentally evaluated by human subjects 
mimicking free-living activities in a laboratory setting.  

II. THEORETICAL FRAMEWORK 

In this section, we exploit the theoretical foundation of 
sparse representation to perform activity classification. 
Different from using the features extracted from the raw 
sensor signals as in a typical activity classification procedure, 
a test signal to be classified will be represented in an 
overcomplete linear space where the base elements (basis) 
consist of a set of training sensor signals. Theoretically, 
human activities consist of complex data that constitute 
complex nonlinear models. Often times, such complex 
nonlinearity is approximated by linear models in a vector 
space with higher-dimensionality than that of a nonlinear 
model. One typical approach of performing the linear 
approximation is to map the original low-dimensional data 
into high dimensional space through some transformation or 
kernel functions [2], e.g., support vector machine (SVM) or 
artificial neural network (ANN). However, such approaches 
require the determination of an appropriate transformation or 
kernel function, as well the extraction of appropriate features.  

Alternatively, that given sufficient training sensor signal 
samples (vectors) that span the activity vector space, it is 
possible to accurately represent a new test signal sample as a 
linear combination of the training samples [8]. Noteworthy is 
that it is a sparse representation that involves base elements 
(training samples) only from the same activity as the test 
sample. The concept of such approach is illustrated in Fig. 1. 
The left side of the equation is the test signal sample from an 
activity such as jogging, which is represented as a sparse 
linear combination (the right side of the equation) of training 
samples from different activities (middle of Fig. 1). The idea 
can be represented in matrix format, expressed as  

 y Ax  (1) 
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where y is the test sample, A is the training sample vector 
space, and x is the sparse coefficients.    
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Fig. 1. Illustration of the sparse representation classification concept.  

A. Sparse Representation Formulation 

Typically, activity classification or any classification 
problem is to identify the activity type or class to which a new 
test sample (usually time-series signals measured by one or 
multiple sensors) belongs, by using labeled/known training 
samples from distinct activity types or classes. Assuming a 
total of K distinct classes (or activities), a training matrix that 
consists of ni training samples from the ith class (or activity), 

can be constructed as ,1 ,2 ,, , , i

i

m n
i i i i nA v v v     , where the 

vector 1
, , 1, 2, ,m

i j iv j n    is the jth training sample with 

m raw sensor data points. For single sensor device, the 
training sample vector consists of data points from the sensor 
signal. While for multi-sensor inputs, each vector vi,j can be 
constructed by stacking the multi-sensor data together. 
Specifically, let s(p)

i,j denote the jth training samples of p 
sensors from the ith activity, and the multi-sensor training 
vector vi,j can thus be constructed as vi,j = [s(1)

i,j
T, s(2)

i,j
T,…, 

s(p)
i,j

T]T. The overall training sample matrix for the K classes, 
represented by A, is defined as  

  
11 2 1,1 1,2 1, 2,1 ,, , , , , , ,

K

m n
K n K nA A A A v v v v v          (2) 

where n is the total number of training samples from the K 

classes, and 
1

K

ii
n n


  .  

For any test sample my  that belongs to the ith class, 

given sufficient training samples from the ith class, y can thus 
be approximately represented as a linear span (or 
combination) of the training samples in Ai [8], expressed as 

 ,1 ,1 ,2 ,2 , ,...
i ii i i i i n i n i iy v v v A x        (3) 

where ,1 ,2 ,[ , , , ]
i

T
i i i i nx     , is a set of ni coefficients 

(scalars). The testing sample y can be rewritten in terms of the 
overall training sample matrix A as 

  0 1 2 1 2, , , , ,
TT T T

k Ky Ax A A A x x x        (4) 

where 0 ,1 ,2 ,[0, ,0, , , , ,0, ,0]
i

T n
i i i nx       , is a global 

coefficient vector corresponding to the testing sample y. It is 
seen that except for the coefficients that are associated with 
the ith class, the rest are zero. Similarly, for a new test sample 
y’ from the (i+1)th class, its corresponding global coefficient 
vector should have zero entries except for those associated 

with the (i+1)th class, specifically 
11,1 1,2 1,, , ,

ii i i n  
   .  

It is further noted that such global coefficient vectors are 
discriminative in nature, and they uniquely represent test 
samples of different classes. Thus, the class (activity) to which 
a test sample y belongs to can be determined through its global 
coefficient vector, which can be obtained by solving the linear 
system of equations y = Ax as in (4). Note that, for a test 
sample of a specific activity, the corresponding coefficient 
vector is sparse that only the coefficients associated with the 
activity are nonzero. As a result, the sparsest solution of (4) 
can be obtained through the following ℓ0-minimization 
problem: 

 0 0
arg min    subject to  x x y Ax   (5) 

where 0x  is sparse solution, arg min is the argument of the 

minimum, 
0

   is the ℓ0-norm, which yields the number of 

nonzero elements in a vector. Usually for physical activity 
classification, the system y = Ax is underdetermined (m << n) 
due to the amount of the training samples needed, and finding 
the sparsest solution of such an underdetermined system of 
linear equations is thus NP-hard [8] such that it requires non-
deterministic polynomial time.  

With recent advancement in the field of compressive 
sensing and sparse representation [6], [7], it has been shown 
that the sparse solution of the ℓ0-minimization problem is 
equivalent to the solution of the following ℓ1-minimization 
problem when the solution x0 is sparse enough [8]: 

 1 1
arg min    subject to  x x y Ax   (6) 

where 1x  is ℓ1-minimization solution, 
1

    is the ℓ1-norm, 

which yields the sum of the modulus of the elements in a 
vector. Solving ℓ1-minimization is a developed problem, 
which can be solved by basis pursuit [11], and the problem 
can be rewritten as  

  2

1 1 1 2
arg min    subject to  minx x x y Ax    (7) 

B. Activity Classification via Sparse Representation 

After obtaining the sparse solution via (7) for any given 
new test sample y, the next step is to identify the activity 
(class) to which y belongs to. An ideal sparse representation 

1x  would consist of nonzero coefficients at the locations 

corresponding to the training matrix Ai of a specific activity, 
and the test sample y can then be easily assigned to that 
activity. However, the sparse solution in practice would be 
contaminated by noise or error due to the minimization 
process, such that 1x  would contain (usually relatively small) 

nonzero elements that correspond to multiple activities. 
Therefore, in order to establish a quantitative classification of 
the activity type, a test sample reconstruction procedure is 
developed: the test sample is reconstructed for each activity 
type as 1( )i iy A x  , where 1( )i x   is a transformation 

function that replaces the elements in the sparse solution that 
correspond to the rest activity types rather than i with zeros. In 
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another word, the nonzero elements in 1( )i x  are only the 

elements in 1x  that are associated with the ith activity, such 

that 1( ) [0, ,0, ,0, ,0]T T
i ix x    . If the test sample y belongs 

to the ith activity, it can be expected that the residue, 
calculated as the root mean squared error between the given 
test sample y and the reconstructed iy  is closest to zero 

(ideally zero) among all residues calculated for the K 
activities. The activity type of the test sample y can thus be 
classified as  

  1 2
argmin i

i
k y A x    (8) 

Thus, such an activity classification algorithm based on 
sparse representation (SRC) using the original raw sensor 
signals instead of extracted features is summarized below: 

 

Sparse Representation Classification Algorithm 
1. Construct a global training sample matrix: 

   1 2 1,1 1,2 ,, , ..., , , ...,
k

m n
k k nA A A A v v v    . 

2. Normalize the columns of A to avoid samples in greater numeric 
ranges dominate those in smaller ranges. 

3. Given a test sample signal y, calculate the sparse solution 

1 1
arg minx x , subject to y = Ax or  2

1 2
min x y Ax  . 

4. Project the sparse coefficients 1x  onto each sub-training space Ai, 

1( ) [0, ,0, ,0, ,0]T T
i ix x    , xi is the coefficients in 1x  

corresponding to ith activity. 

5. Calculate the residue for each activity  1 2iy A x  . 

6. Classify y:  1 2
arg min i

i
k y A x   . 

C. Random Feature Projection 

When the classification system have a large number of 
sensors and/or when individual training sample consists of a 
substantial amount of sensor data points, the training sample 
matrix would therefore be constructed with a high 
dimensionality of m. For example, for 10-channel sensor 
signals sampled at 1 kHz, if individual training sample length 
is 10 second, the dimension of the constructed training matrix 
is in the order of 105. Such a high dimensionality would 
increase the computational cost substantially.  

Construct a transformation matrix d mR   with d << m, 
and each element of R is independently sampled from a 
standard Gaussian distribution with the mean equal to 0 and 
variance equal to 1. Such a matrix R is considered to be a 
random feature projection that extracts random “features” 
from the original raw sensor signals. Multiplying R to both 
sides of (1), the dimensionality of A is then reduced from m to 
d, and (1) can thus be rewritten as  

 0Ry RAx  (9) 

Denote ŷ Ry , 1ˆ dy  , and the sparse solution 1x  can 

still be obtained by solving the following reduced ℓ1-
minimization problem [8]: 

  
1 1

2

1 2

ˆarg min ,   subject to   

ˆ                          or subject to  min

x x y RAx

x y RAx

 

 


 (10) 

Furthermore, it is reported in previous study [8] that if the 
solution x0 is sparse enough such that the number of the 
nonzero elements in x0 is far less than the number of the total 
training samples in A, the sparse solution 1x  can be correctly 

obtained from any sufficiently large number of d of the 
projection R. Thus, the SRC algorithm can be updated by 
replacing the training sample matrix A with RA, and test 
sample y with Ry. 

III. EXPERIMENTS 

The performance of the sparse representation based activity 
classification algorithm has been evaluated through 
experiments, where a total of 105 healthy subjects (44 male, 
61 female) were recruited. Specifically, the group has the 
following characteristics (mean ± standard deviation): age = 
34.7±14.2 years, weight = 68.7±17.1 kg, height = 166.8±11.3 
cm, and body mass index = 24.4±4.5 kg/m2. Each subject 
wears a multi-sensor system [2] that consists of two tri-axial 
accelerometers (MMA7260QT, Freescale) placed at the hip 
and wrist, and one ventilation sensor (1325 Piezo Crystal 
Sensor, Ambu Sleepmate) secured to the abdomen (AB) at the 
level of umbilicus of the test subjects. The accelerometers 
measure the trunk and arm motions, and the ventilation sensor 
measures the expansion and contraction associated with 
breathing rate and volume representing the physiological 
response to bodily movement. Data from the three sensors are 
sampled at 30 Hz and pre-processed by a microcontroller on 
board a data logger, worn at the subject’s waist and 
subsequently stored into a micro-flash memory. 

Each subject completed activities in one of the two 
following groups in a random order: 1) computer work (CW), 
moving boxes (MB), cycling with 1-kp resistance (C1), 
treadmill walking at 3.0 mph with 0% grade (T3-0), treadmill 
walking at 3.0 mph with 5% grade (T3-5), treadmill walking 
at 4.0 mph with 5% grade (T4-5), and tennis (TE); and 2) 
filing papers (FP), vacuuming (VA), self-paced walk (SW), 
cycling with 2-kp resistance (C2), treadmill walking at 4.0 
mph with 0% grade (T4-0), treadmill jogging at 6.0 mph and 
0% grade (T6-0), and basketball (BA). Subjects were not 
required to complete all activities and were allowed to skip the 
high-intensity activities that they did not feel comfortable to 
complete, e.g., treadmill at 6.0 mph, basketball or tennis. Each 
activity, when performed, lasted for 7 minutes long, followed 
by a 2-minute rest period. 

Subject data of each sensor were also divided into 5-second 
intervals to construct the training matrix for the SRC 
algorithm. Same data set was also processed by a conventional 
technique – k-nearest neighbor (kNN) for comparison. Leave-
one-out cross validation was performed during the process. 

IV. RESULTS 

Figure 2 shows an example of the sparse representation 
based classification of a test sample from the activity CW, 
among 6 different activities. Each activity had 80 training 
samples, which constructed a global training sample of 480 
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training vectors from the 6 activity types. It is seen from Fig. 
2(a) that the obtained sparse solution has more nonzero 
elements corresponding to CW than the rest activities, and 
from the quantitative calculation of the residues as shown in 
Fig. 2(b) that the residue corresponding to the CW activity 
was the smallest and closest to zero among the 6 activities. 
Therefore, the activity type of the given test sample was 
identified as activity CW. 
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Fig. 2. An example of sparse representation classification. (a) Sparse solution 
of a test sample from the activity CW; (b) Residues of the reconstructed test 
sample of each activity type. 

As seen in section II.A, while using the random feature 
projection may reduce the computational complexity, it may 
also affect the activity classification performance without 
choosing an appropriate dimension of the projection matrix R. 
To evaluate the effect of the dimension of R, a preliminary test 
has been performed as shown in Fig. 3, where the activity 
classification accuracy was calculated for each matrix 
dimensionality ranging from 10 to 150. It is seen that the 
classification rate increases as the dimension of the projection 
increases. When the dimension of the project exceeds 50, the 
increase of the classification rate reaches a plateau, and the 
activity classification accuracy reaches its maximum of 83.0% 
at the dimension of 60. Thus, a 60-dimension random feature 
projection would be reasonable for activity classification. 

 
Fig. 3. Classification rates corresponding to different projection dimensions. 

With the random feature projection, as long as the sparse 
solution can be correctly obtained [8], the developed sparse 

representation classification algorithm will always yield the 
same classification results as using the original training 
sample matrix of large dimensionality. Furthermore, by 
applying such a random feature projection, it can be 
concluded that the selection of an appropriate feature set is no 
longer critical to the classification problem, since a random 
feature extraction can also achieve the same performance. 

Table I compares the activity classification accuracy, mean 
and standard deviation (SD) of the 105 subjects by the SRC 
algorithm with that by using the k-Nearest Neighbor (kNN) 
algorithm (with mean, standard deviation, and 10th, 25th, 
50th, 75th, and 90th percentiles extracted as features [2]). The 
result has demonstrated better discriminative performance of 
the SRC than kNN.  

TABLE I 
COMPARISON OF ACTIVITY CLASSIFICATION ACCURACY 

Methods SRC kNN 
Classification Accuracy (Mean ± SD) 83.0 ± 5.6 72.7 ± 16.8 

V. CONCLUSION 

A new classification method based on sparse representation 
of data has been developed for physical activity assessment. 
Experimental results have demonstrated higher classification 
accuracy by the SRC algorithm than that by conventional 
classification methods such as kNN. Future study will 
comparatively evaluate the performance of the developed 
algorithm against other activity classifiers, as well as perform 
a complexity analysis of the developed algorithm in terms of 
its implementability for portable activity monitoring devices. 
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