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Abstract— One of the main limitations of the brain functional 

connectivity estimation methods based on Autoregressive 

Modeling, like the Granger Causality family of estimators, is 

the hypothesis that only stationary signals can be included in 

the estimation process. This hypothesis precludes the analysis of 

transients which often contain important information about the 

neural processes of interest. On the other hand, previous 

techniques developed for overcoming this limitation are affected 

by problems linked to the dimension of the multivariate 

autoregressive model (MVAR), which prevents from analysing 

complex networks like those at the basis of most cognitive 

functions in the brain. The General Linear Kalman Filter 

(GLKF) approach to the estimation of adaptive MVARs was 

recently introduced to deal with a high number of time series 

(up to 60) in a full multivariate analysis. In this  work we 

evaluated the performances of this new method in terms of 

estimation quality and adaptation speed, by means of a 

simulation study in which specific factors of interest were 

systematically varied in the signal generation to investigate 

their effect on the method performances. The method was then 

applied to high density EEG data related to an imaginative task. 

The results confirmed the possibility to use this approach to 

study complex connectivity networks in a full multivariate and 

adaptive fashion, thus opening the way to an effective 

estimation of complex brain connectivity networks.  

 

I. INTRODUCTION 

In the last decades, the concept of Granger causality [1] 

has gained more and more importance in the field of brain 

connectivity estimation due to many reasons, among which 

the fact that it can describe separately the functional 
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influences between two neural assemblies in the two 

directions (ij and ji) and that it has been extended from 

a pairwise to a multivariate analysis [2, 3]. In fact, as pointed 

out from the very beginning by its Author [1] this analysis is 

able to depict an accurate connectivity pattern given that all 

relevant sources of the problem are included in the model 

(the “hidden source-dilemma”) because hidden sources, i.e. 

not-measured brain activity, can cause misleading interaction 

results. According to these considerations, not only a 

multivariate approach is preferable, in terms of accuracy of 

the pattern reconstruction, to a bivariate one, as 

demonstrated in [4], but it is also crucial to insert all relevant 

sources in the multivariate modelling. The issue of the model 

dimension becomes then crucial to reach a full description of 

brain networks. 

All the MVAR based methodologies for the functional 

connectivity estimation require the hypothesis of stationary 

signals. Thus, the temporal dynamics of the influences 

between cerebral areas are completely loss. To overcome 

this limitation, different algorithms for the estimation of 

MVAR with time dependent coefficients were recently 

developed. In particular, these methodologies are based on 

short-time window approaches, assuming the signals are 

stationary in short time intervals [5] or on an adaptive 

estimation of the MVAR model by a recursive algorithm 

involving a weighted influence of the past of the signal, as in 

the multi-trial Recursive Least Square (RLS) method with 

Forgetting Factor [6, 7]. However, even if the RLS 

overcomes the problem of non-stationary data, it presents a 

limitation on the number of signals to be considered 

contemporary in the estimation, due to computational 

complexity [7]. The problem of the model dimension can be 

solved by reducing the number of electrodes time series to be 

included in the model [7] or by using cortical waveforms 

derived for some regions of interest from high resolution 

EEG data [8]. However, the need to reduce the model 

dimension introduces a significant source of error, since each 

time a relevant source of information of the problem is 

removed from the autoregressive modelling, this introduces 

spurious connectivity links and degrades the reconstruction 

of the connectivity network. In 2010, a new method based on 

a General Linear Kalman Filter (GLKF), was provided as a 

solution to the limitation in the number of signals [9]. This 

work aims at testing the performances of the GLKF method 
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on large networks (number of brain areas >= 60) in terms of 

estimation accuracy and adaptation speed, by means of a 

simulation study. Results will provide an estimation of these 

indices of the performances under specific conditions of the 

signals and a statistical analysis (Analysis Of Variance, 

ANOVA) of the dependency of the performances from the 

SNR and the amount of trials used for the estimation. The 

new method testing will be completed with an application of 

the GLKF to high density EEG data acquired during the 

imagery of hands grasping.  

II. METHODS 

A. Multivariate Methods for the Estimation of Connectivity 

Supposing that the following multivariate autoregressive 

(MVAR) model is an adequate description of the dataset Y: 
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where Y(t) is the data vector in time, E(t) is a vector of 

multivariate zero-mean uncorrelated white noise processes, 

Λ(k) is the matrix of model coefficients at lag k and p is the 

model order, that can be chosen by means of the Akaike 

Information Criteria (AIC) for MVAR processes [9], to 

investigate the spectral properties of the examined process, 

(1) is transformed to the frequency domain: 
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where Δt is the temporal interval between two samples.   

B. Partial Directed Coherence 

The PDC [3] is a full multivariate spectral measure, used 

to determine the directed influences between any given pair 

of signals in a multivariate data set. This estimator was 

demonstrated to be a frequency version of the concept of 

Granger causality [1]. 

It is possible to define PDC as: 
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Different estimators generalizing PDC were developed 

during the years [11]-[12]-[13]. Among them, squared values 

of PDC were shown to provide higher accuracy and stability  

[13]. The performances of a time varying adaptation of this 

estimator based on a Recursive Least Square with forgetting 

factor were analyzed by a simulation study in [8]. 

C.   The General Linear Kalman Filter 

In the GLKF an adaptation of the Kalman Filter to the 
case of multi-trial time series is provided. In particular:  
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where On represents the observation, Qn is the state process, 
Hn and Gn are the transition matrices and Vn and Wn are the 
additive noises. To obtain the connection with the time-
varying MVAR it is necessary to make the following 
associations:  
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where K denotes the number of trials, whereas d is the 

dimension of the measured process. The details of the 

algorithm are provided in [9]. 

D.   The Simulation Study 

The simulation study involved the following steps: 
1) Generation of different simulated datasets fitting a 
predefined model composed by 60 nodes and achieved 
imposing different levels of trials number (factor TRIAL: 10, 
20, 30, 50, 100) and Signal to Noise Ratio (factor SNR: 0.1, 
1, 3, 5).  
2) Evaluation, for each dataset, of time varying MVAR 
coefficients by means of GLKF method and estimation of  
time varying PDC. 
3) Evaluation of performance indexes such as the relative 
error and the samples at settling, defined as in [8].  
4) Analysis Of Variance (ANOVA) for repeated measures of 
the performance indexes, in order to evaluate the effects of 
the factors TRIAL and SNR on the performances of the 
analyzed method.  

E.   The High Density EEG Study 

Ten healthy volunteers took part in the experiment. They 

were asked to perform an imagery task (i.e. prolonged hands 

grasping) or simply relax (baseline condition) according to 

the position of a red target on a screen. The experiment was 

divided into 6 sessions of 12 trials each (6 for each task), 

with events randomly ordered within each session. We set a 

task length of 15s and an inter-trial interval of 2s. The 

recordings were performed by means of a cap equipped with 

61 channels disposed according to an extension of 10-20 

system. Data were band pass filtered (1-45 Hz + 50Hz 

Notch) and segmented in the interval [- 500 ; +500] ms in 

respect to the task execution onset. After the application of a 

semi-automatic procedure for artifacts rejection, based on 

threshold criteria, data were subjected to time varying 

functional connectivity estimation process by means of 

GLKF method. Then, a statistical comparison between 

connectivity patterns related to task and baseline conditions 

was performed to highlight the functional links related to the 

task execution. 
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III. RESULTS 

A.   Results of Simulation Study 

B.   Results of High Density EEG Study 

In order to apply the Kalman Filtering algorithm to real 
data and to test its capacity to accurately infer functional 
connectivity patterns on high dimensional models, time 
varying PDC was estimated for each condition (task and 
baseline) from the high density EEG data collected during 
the imaginative task. To highlight only the information flows 
related to the task  execution, a statistical comparison 
between task and baseline conditions was performed with a 
significance level of 5%, corrected with False Discovery 
Rate criterion for multiple comparisons. The significant 
connectivity patterns were averaged within four frequency 
bands defined according to the Individual Alpha Frequency 
(IAF) [14] and within four time intervals, two before and two 
after the beginning of task execution.  

Functional connectivity patterns elicited during the 
prolonged hands grasping imagery in Beta band were 
reported in Fig.2 for a representative subject. In the figure, 
each network is related to a specific time interval defined 
according to the onset of the task execution: (-500 ; -250) ms 
(a), (-250 ; 0) ms (b), (0 ; 250) ms (c), (250; 500) ms (d). 
Connectivity patterns are represented on a scalp model seen 
from above, with the nose pointing to the upper part of the 
page. The colors and sizes of the arrows code the strength of 
the connections. Few connections (less than 5%) survived to 
the statistical comparison between task and baseline 
conditions in the two time intervals before the task execution 
(a and b). c and d showed the temporal evolution of 
connectivity patterns during hands grasping imagery. The 
major involvement of the frontal regions and of the centro-
parietal regions, mainly in the dominant hemisphere (left part 
of the head) related to motor imagery tasks was evident since 
the first 250 ms of imagination (c). Such involvement was 
confirmed and reinforced in the following 250 ms (d).  

IV. DISCUSSION 

The results provided by the simulation study suggest that 

the GLKF based estimation of time varying PDC is a able to 

follow the temporal evolution of high dimensional 

connectivity networks. In fact, for values of SNR and TRIAL 

levels largely met, for instance, in usual EEG recordings 

(SNR>1, TRIAL>=30), the method is able to follow the 

transitions of the connectivity flows with good accuracy 

(relative error below 1%) and speed (samples at settling 

below 200 samples). Low values of SNR and insufficient 

number of trials led to inaccurate estimations.  

These results are confirmed by the application of GLKF to 

high density EEG data. In fact, the method allowed to 

describe the temporal evolution of connectivity patterns 

related to hands grasping imagery. No significant 

connectivity, with respect to the baseline condition, was 

shown before the imagery task onset, while a high 
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involvement of frontal and left centro-parietal areas was 

described during the task execution. Such results are in 

agreement with the literature associated to this type of task 

[15]. The transition between baseline and motor imagery was 

accurately described in the first 250 ms of task execution, 

thus showing the good adaptation speed of the method. 

 

 

 
Fig. 2. Functional connectivity patterns elicited during the prolonged 

hands grasping imagery in Beta band, in a representative subject. Each 
network is related to a specific time interval, defined according to the 
imagery onset: [-500 ; -250] ms (a), [-250 ; 0] ms (b), [0 ; 250] ms (c), [250 
; 500] ms (d). Head seen from above, the nose pointing to the upper part of 
the page. The color and size of the arrows code the connection strength.  

V. CONCLUSION 

The results achieved by the simulation study and the 

application on high density EEG showed how GLKF based 

time varying functional connectivity overcomes the limits of 

previously used RLS, by providing an accurate estimation of 

functional connectivity patterns and allowing to analyze high 

dimensional models, thus opening the way to an effective 

estimation of complex brain connectivity networks. 
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