
  

  

Abstract— The aim of this study was to analyze the 

magnetoencephalography (MEG) background activity in 

Alzheimer’s disease (AD) patients using cross-approximate 

entropy (Cross-ApEn). Cross-ApEn is a nonlinear measure of 

asynchrony between time series. Five minutes of recording 

were acquired with a 148-channel whole-head magnetometer in 

12 AD patients and 12 age-matched control subjects. We found 

significantly higher synchrony between MEG signals from AD 

patients compared with control subjects. Additionally, we 

evaluated the ability of Cross-ApEn to discriminate these two 

groups using receiver operating characteristic (ROC) curves 

with a leave-one-out cross-validation procedure. We obtained 

an accuracy of 70.83% (66.67% sensitivity, 75% specificity) 

and a value of area under the ROC curve of 0.83. These results 

provide evidence of disconnection problems in AD. Our 

findings show the usefulness of Cross-ApEn to detect the brain 

dysfunction in AD. 

I. INTRODUCTION 

LZHEIMER’S DISEASE (AD) is a primary degenerative 
neurological disorder of unknown etiology that 

gradually destroys brain cells. Nowadays, it is considered 
the main cause of dementia in western countries [1]. AD 
affects 1% of population aged 60-64 years, but the 
prevalence increases exponentially with age, so about 30% 
of people over 85 years suffer from this disease [2]. 
Additionally, as life expectancy has improved significantly 
in the last decades, it is expected that the number of people 
with dementia increase up to 81 millions in 2040 [2]. 
Clinically, this disease manifests as a slowly progressive 
impairment of mental functions whose course lasts several 
years prior to death [2]. Usually, AD starts by destroying 
neurons in parts of the patient’s brain that are responsible for 
storing and retrieving information. Then, it affects the brain 
areas involved in language and reasoning. Eventually, many 
other brain regions are atrophied. Although a definite AD 
diagnosis is only possible by necropsy, a differential 
diagnosis with other types of dementia and with major 
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depression should be attempted. The differential diagnosis 
includes medical history studies, physical and neurological 
evaluation, mental status tests, and neuroimaging techniques. 

Nowadays, magnetoencephalography (MEG) recordings 
are not used in AD clinical diagnosis, in spite of its potential 
as aid diagnostic tool. MEG is a non-invasive technique that 
records the electromagnetic fields produced by brain activity 
with good temporal resolution. MEG technology offers some 
advantages over electroencephalography (EEG). For 
instance, magnetic fields are not distorted by the resistive 
properties of the skull. Furthermore, EEG signals are 
influenced by a wide variety of factors, such as distance 
between sensors, electrode location, reference point or 
conducting substance between skin and electrode. On the 
other hand, the magnetic signals generated by the human 
brain are extremely weak. Thus, SQUID (Superconducting 
QUantum Interference Device) sensors are necessary to 
detect them. In addition, MEG signals must be recorded in a 
magnetically shielded room. Thus, MEG is characterized by 
limited availability and high equipment cost. 

Entropy is a concept addressing randomness and 
predictability, with greater entropy often associated with 
more randomness and less system order [3]. Mainly, there 
are two families of entropy estimators: spectral entropies and 
embedding entropies [4]. Spectral entropies extract 
information from the amplitude component of the frequency 
spectrum. On the other hand, embedding entropies are 
calculated directly using the time series. This entropies 
family provides information about how the signal fluctuates 
with time by comparing the time series with a delayed 
version of itself [4]. Both spectral and embedding entropies 
have demonstrated their usefulness in the analysis of 
EEG/MEG background activity in AD. An increase of 
entropy values has been found using approximate entropy 
(ApEn) [5], sample entropy [6], Shannon spectral entropy, 
Rényi spectral entropy and Tsallis spectral entropy [7]. 
However, all these measures are applied to each EEG or 
MEG channel independently. In the current study, we want 
to go a step ahead, applying cross-approximate entropy 
(Cross-ApEn) to MEG recordings from 12 AD patients and 
12 age-matched control subjects. Cross-ApEn is a nonlinear 
measure of asynchrony between time series. It has already 
been used to study some biological signals, as hormone time 
series dynamics [8], blood oxygen saturation and heart rate 
[9]. 

The purpose of this study was to test the hypothesis that 
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Cross-ApEn values of the magnetic brain activity would be 
different in both groups, hence indicating an abnormal type 
of dynamics associated with AD. 

II. MATERIALS AND METHODS 

A. MEG recording 

MEGs were recorded using a 148-channel whole-head 
magnetometer (MAGNES 2500 WH, 4D Neuroimaging) 
placed in a magnetically shielded room. The subjects lay on 
a patient bed, in a relaxed state and with their eyes closed. 
They were asked to stay awake and to avoid eye and head 
movements. For each subject, five minutes of recording 
were acquired at a sampling frequency of 678.17 Hz. These 
recordings were down-sampled by a factor of four, obtaining 
a sampling rate of 169.55 Hz. Data were digitally filtered 
between 0.5 and 40 Hz. Finally, artifact-free epochs of 5 
seconds (848 samples) were selected. 

B. Subjects 

The MEG data were acquired from 24 subjects. Twelve 
patients (3 men and 9 women) fulfilling the criteria of 
probable AD (age = 70.42 ± 9.04 years, mean ± standard 
deviation SD) have participated in the present study. The 
patients were diagnosed according to the criteria of the 
National Institute of Communicative Disorders and Stroke 
and the AD and Related Disorders Association (NINCDS-
ADRDA). The MMSE score was 17.00 ± 3.98 (Mean ± SD). 
None of the patients used any kind of medication that could 
have an influence on the MEG.  

MEGs were also obtained from 12 age-matched control 
subjects (5 men and 7 women, age = 70.42 ± 7.75 years, 
MMSE = 29.50 ± 0.52, mean ± SD). The local ethics 
committee approved the study. All control subjects and all 
caregivers of the demented patients gave their informed 
consent for the participation in the current research. 

C. Cross Approximate Entropy (Cross-ApEn) 

Cross-ApEn is a two-parameter family of statistics 
introduced as a measure of asynchrony between two paired 
time series [10]. It evaluates secondary as well as dominant 
patterns in data, quantifying changes in underlying episodic 
behavior that do no reflect in peak occurrences and 
amplitudes [8]. To compute Cross-ApEn, two input 
parameters must be specified: a run length m and a tolerance 
window r. For two time series, u(i) and v(i), Cross-ApEn 
measures, within tolerance r, the (conditional) regularity or 
frequency of v-patterns similar to a given u-pattern of 
window length m. Although m and r are critical in the 
calculation of ApEn and Cross-ApEn, no guidelines exist to 
optimize their values. However, values of m equal to 1 or 2, 
and r between 0.1 and 0.25 has been suggested [10]. In this 
pilot study, we have chosen m = 1 and r = 0.2 to compute 
Cross-ApEn.  

Given two equally sampled sequences of length N, u = 
[u(1), u(2),…, u(N)] and v = [v(1), v(2),…, v(N)], the 

algorithm to compute Cross-ApEn is the following [9, 10]: 

1) Normalize u(i) and v(i). The normalized time series u*(i) 
and v*(i) are:  

u
*
(i) = u(i) "mean(u)[ ] /SD(u)      (1) 

v
*
(i) = v(i) "mean(v)[ ] /SD(v)      (2) 

2) Form the vector sequences x(i) = [u*(i), u
*(i+1),…, 

u
*(i+m–1)] and y(j) = [v*(j), v

*(j+1),…, v
*(j+m–1)]. 

These vectors represent m consecutive u* and v* values 
starting with the ith and jth point, respectively. 

3) Define the distance between x(i) and y(j), d[x(i), y(j)], as 
the maximum absolute difference of their corresponding 
scalar components: 

d[ x(i), y( j)] = max
k=1,2,...,m

u(i + k "1) " v( j + k "1)   (3) 

4) For each x(i), count the number of j (j=1,2,…,N!m+1) 
so that d[x(i), y(j)]!r, denoted as Ni

m(r). Then, for 
i=1,2,…,N!m+1, set 

C
i

m
(r)(v u) =

N
i

m
(r)

N "m +1
       (4) 

5) Compute the natural logarithm of each Ci
m(r) and 

average it over i: 

"m
(r)(v u) =

1

N #m +1
lnC

i

m
(r)

i=1

N #m+1

$ (v u)     (5) 

6) Finally, Cross-ApEn is defined by: 
Cross - ApEn(m,r,N )(v u) ="m

(r)(v u) #"m+1
(r)(v u)   (6) 

It is important to note that Cross-ApEn is not always 
defined because Ci

m(r)(v||u) may be equal to 0 in the absence 
of similar patterns between u and v. To solve this, two 
correction strategies have been proposed [11]: bias 0 and 
bias max. In this study, both correction strategies have been 
applied. Both strategies assign non zero values to Ci

m(r)(v||u) 
and Ci

m+1(r)(v||u) in the absence of matches, as follows: 

1) Bias 0: Ci
m(r) = Ci

m+1(r) = 1 if originally Ci
m(r) = 

Ci
m+1(r) = 0, and Ci

m+1(r) = (N–m)–1 if originally Ci
m(r) " 

0 and Ci
m+1(r) = 0. 

2) Bias max: Ci
m(r) = 1 if originally Ci

m(r) = 0, and Ci
m+1(r) 

= (N–m+1)–1 if originally Ci
m+1(r) = 0. 

III. RESULTS 

Cross-ApEn algorithm was applied to the MEG 
recordings with parameter values of m = 1 and r = 0.2 and 
both correction strategies bias 0 and biax max. The end 
result of computing Cross-ApEn for all pair-wise 
combinations of MEG channels is a B ! B matrix with B = 
148 (number of channels), where each entry Bi,j contains the 
Cross-ApEn value for channels i and j. It is important to note 
that there is a direction dependence, due to the fact that 
"m(r)(v||u) will note generally be equal to "m(r)(u||v). This 
may be considered an advantage over other synchrony 
methods as coherence or synchronization likelihood. Fig. 1 
and 2 summarize the average Cross-ApEn values estimated 
at both groups for all the pair-wise combinations of MEG 
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Fig. 1. Average Cross-ApEn values with bias 0 correction for AD and control groups.  

channels using bias 0 and bias max corrections, respectively. 
This figures show that entropy values were lower in the AD 
group than in the control group for all channels 
combinations, which suggests that this disorder is 
accompanied by a MEG asynchrony decrease. Differences 
between patients and controls were statistically significant 
(Student’s t-test) in 55.69% of the 148 ! 148 MEG 
combinations using bias 0 correction, and in 63.66% using 
bias max correction. As a multiple comparison correction 
has not been performed, these results should be taken with 
caution. 

Furthermore, we evaluated the ability of Cross-ApEn to 
discriminate AD patients from elderly control subjects by 
means of receiver operating characteristic (ROC) curves. A 
ROC curve is a graphical representation of the trade-offs 
between sensitivity and specificity. We define sensitivity as 
the rate of ADHD patients who test positive, whereas 
specificity represents the fraction of controls correctly 
recognized. Accuracy quantifies the total number of subjects 
precisely classified. The area under the ROC curve (AROC) 
is a single number summarizing the performance. AROC 
indicates the probability that a randomly selected AD patient 
has a Cross-ApEn value lower than a randomly chosen 
control subject. In order to calculate these values, a leave-
one-out cross-validation procedure was used. In the leave-
one-out method, the data from one subject are excluded from 
the training set one at a time and then classified on the basis 
of the threshold calculated from the data of all other 
subjects. The leave-one-out cross-validation procedure 
provides a nearly unbiased estimate of the true error rate of 
the classification procedure. To simplify the analyses, we 
calculate the mean value of all the 148 ! 148 Cross-ApEn 
values, for bias 0 and bias max corrections. For both 

correction strategies, we obtained the same accuracy 
(70.83%), sensitivity (66.67%), specificity (75.00%) and 
AROC (0.83) values. 

IV. DISCUSSION AND CONCLUSIONS 

We analyzed the MEG background activity from 12 AD 
patients and 12 control subjects by means of Cross-ApEn. 
Our purpose was to test the hypothesis that the brain activity 
recorded in MEG signals can reflect a disconnection 
syndrome in AD patients.  

Cross-ApEn has proven to be effective in discriminating 
AD patients from controls. Our study revealed that AD 
subjects have lower connectivity/asynchrony values. Our 
findings support the notion that AD involves a loss of 
functional connectivity. Moreover, significant statistical 
differences were found in several combinations of MEG 
channels. However, these findings are preliminary and 
require replication in a larger patient population before any 
conclusion can be made about the clinical diagnostic value 
of this measure. 

Several studies have shown the loss of brain connectivity 
in AD using EEG and MEG recordings. Most of these 
studies were carried out using the well-known coherence 
[12]. The main finding is a lower synchronization level in 
alpha and beta frequency bands. Nevertheless, contradictory 
results have been found in the other frequency bands [2]. 
More recently, other connectivity methods have been used to 
analyze the brain activity in AD, as cross mutual information 
[13], global field synchronization [14], and synchronization 
likelihood [15]. For instance, Jeong et al. [13] found that 
cross mutual information in EEGs from AD patients was 
lower than in normal controls, especially over frontal and 
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Fig. 2. Average Cross-ApEn values with bias max correction for AD and control groups. 
 
 

antero-temporal brain regions. Using global field 
synchronization, similar results were found: patients showed 
decreased synchronization values in almost all frequency 
bands [14]. These results may confirm the hypothesized 
disconnection syndrome. This connectivity loss in AD may 
be due to the fact that neuritic plaques appears organized in 
AD patients’ brains, affecting the ends of corticocortical 
connections [16]. 

ROC curves were used to assess the ability of Cross-ApEn 
to classify ADHD patients and control subjects. We reached 
an accuracy of 70.83% (66.67% sensitivity, 75% specificity) 
and a value of area under the ROC curve of 0.83. 
Nevertheless, these values should be taken with caution due 
to the small sample size. 

In sum, our study leads us to conclude that MEG 
background activity in AD patients is accompanied by a 
brain asynchrony decrease. The results obtained with Cross-

ApEn showed significant differences between AD patients 
and controls, indicating an abnormal type of dynamics 
associated with this disorder. 
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