
Comparing causality measures of fMRI data using PCA, CCA and

Vector Autoregressive Modelling

Adnan Shah and Muhammad Usman Khalid and Abd-Krim Seghouane

Abstract— Extracting the directional interaction between
activated brain areas from functional magnetic resonance
imaging (fMRI) time series measurements of their activity is a
significant step in understanding the process of brain functions.
In this paper, the directional interaction between fMRI time
series characterizing the activity of two neuronal sites is
quantified using two measures; one derived based on univariate
autoregressive and autoregressive exogenous (AR/ARX) and
other derived based on multivariate vector autoregressive and
vector autoregressive exogenous (VAR/VARX) models. The
significance and effectiveness of these measures is illustrated
on both simulated and real fMRI data sets. It has been
revealed that VAR modelling of the regions of interest is robust
in inferring true causality compared to principal component
analysis (PCA) and canonical correlation analysis (CCA) based
causality methods.
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I. INTRODUCTION

In order to thoroughly characterize brain functions, fMRI

should not be used only for functional segregation to accu-

rately delineate activated brain regions but also for functional

integration to explore brain networks. Important information

on the brain structure can be obtained by measuring to

which extent the individual neuronal sites contribute to

information production and how they communicate among

each other. The individual site contributions can be measured

with quantities such as entropy, however the direction of

interaction requires special measures. Inferring the inter-

action structure between two brain regions from the time

series measurements of their activity requires three steps

from the analysis technique: i) the detection of existence

of interaction or coupling, ii) the distinction between di-

rect and indirect interaction and iii) the definition of the

direction of interaction or the direction of information flow.

Symmetric measures such as temporal correlation and mutual

information have been used for the estimation of functional

connectivity network [10], [9]. Unfortunately neither of these

measures can provide directional information. Model-based

directionality measures of coupling such as SEM [6] or

DCM [7] have been proposed to address the shortcomings of
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symmetric measures such as linear correlation. The concept

of Granger causality (GC) [8], a data-driven approach, has

been adapted to fMRI in order to identify causal relations in

the brain [5], [1] and later on extended to multiple time-series

based on [11]. Directed information (transinformation [12])

has been introduced to infer functional neuroimage time-

series causality. Furthermore, a data driven measure derived

using Kullback-Leibler divergence has been used to quantify

the information flow in fMRI time-series [13]. However, all

these data-driven causality statistics reported in the literature

measure the same underlying quantity and are related by

some scaling factor [14].

In this work, a comparison in terms of data-driven causality

between fitting a univariate autoregressive model and a

multivariate vector autoregressive model (VAR) to fMRI

time-series data of two brain regions of interest (ROIs) is

reported. In a typical fMRI experiment, several ROIs are

a priori identified in the brain. Each ROI is represented in

the fMRI data set by multiple voxels, where each voxel is a

variable comprising a single time series reflecting changes in

the underlying metabolic signal. The directional interaction

between two ROIs can be assessed by formulating the ROIs

interaction as either an interaction among univariate time-

series or among multivariate time-series both leading to

a drive-response relation between source and target ROI.

For univariate approach, dimensionality reduction techniques

such as PCA and CCA [17] are used to derive a represen-

tative time series for each interacting ROI, which are then

used to derive the causality measure using the standard GC

framework in the context of AR/ARX models. In multivariate

approach, interactions among groups of voxels from interact-

ing ROIs are taken into account by fitting individual vector

autoregressive (VAR) model to each ROI. A multivariate

causality measure [11] is derived for these interacting ROIs

based on the generalized variance of the residual errors in

the context of VAR/VARX models.

The next section introduces the VAR framework for com-

puting the causal interaction. In Section 3, PCA and CCA

is discussed and univariate causality measure is derived.

Section 4 presents performance results on both simulated and

real fMRI data. Concluding remarks are given in Section 5.

II. VECTOR AUTOREGRESSIVE APPROACH

To assess the interaction in multivariate framework, ROI

time-series are taken together and the ROI as a vector

autoregressive model (VAR) [4] take part in determining

the causality. With no standard definition for GC when the

interacting ROIs are multivariate, GC based on Gewekes
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approach [11] with generalized variance (alternatively trace)

of the residual errors is used here to find multivariate

causality among interacting ROIs.

VAR models simultaneously estimate the interrelationship

between more than one endogenous variables by estimating

the coefficient matrix of autoregressive coefficient for each

time-series involved in model estimation. Assume two mul-

tivariate stochastic processes of length N , X = (xv,k : v =
1, ..., V ; k = 1, ..., N) and Y = (yv,k : v = 1, ..., V ; k =
1, ..., N) corresponding to two ROIs composed of V voxels

between which some interaction exists. Then the interacting

VAR models based on X and Y in the standard form of a

multivariate linear regression are as follows

ROI1 : X = ZΘ+ η, (1)

ROI1 ← ROI2 : X = ZΘ+KΦ+ ζ, (2)

where Z = [Xk−1, Xk−2, ..., Xk−p] and K =
[Yk−1, Yk−2, ..., Yk−q] are the p and q previous multivariate

time series samples, X is ((N − p) × V ) and Θ and Φ
are (V × V ) coefficient matrices of the VAR model to be

estimated. η and ζ are i.i.d Gaussian noises with zero mean

and d× d covariance matrices Σp and Σpq , respectively.

In such a VAR model (1) of order p with V channels, there

are pV 2 number of unknown coefficients to be estimated,

which can easily be satisfied for a least square solution

[16] in fMRI data by choosing ROI size in relation to the

sample length. The least-squares (LS) solution for the VAR

coefficients in (1) is

Θ̂ = (Z⊤Z)−1Z⊤X (3)

and the corresponding noise covariance estimate is,

Σ̂p =
1

N − l
(X − ZΘ̂)⊤(X − ZΘ̂) (4)

Similarly, for (2) we consider the generic least-squares

problem of minimizing

T (Θ,Φ) = (X − ZΘ−KΦ)⊤(X − ZΘ−KΦ) (5)

First, minimizing (5) with respect to Θ to get Θ̂ =
(Z⊤Z)−1Z⊤(X − KΦ) and then minimizing the updated

expression with respect to Φ to get Φ̂ = (K⊤PK)−1K⊤PX
where, P = I−Z(ZTZ)−1Z⊤ is the orthogonal projection.

Finally, the minimized LS estimate of Θ incorporating Φ̂ into

account is

Θ̂ = (Z⊤Z)−1Z⊤(X −KΦ̂) (6)

and the corresponding noise covariance estimate is,

Σ̂pq =
1

N − l
(X − ZΘ̂−KΦ̂)⊤(X − ZΘ̂−KΦ̂) (7)

Based on these estimates, multivariate ROI causal interaction

C1 is defined based on generalized variance as the log of

the ratio of the determinants of the residual covariances for

the regressions

C1(X ← Y ) = ln(|Σ̂p|/|Σ̂pq|) (8)

with C1(X → Y ) > C1(Y → X) implies that the ROI X
is predominantly acting as a source and Y as a target.

III. UNIVARIATE AUTOREGRESSIVE APPROACH

In univariate framework, dimensionality reduction is per-

formed on ROI time-series to define a representative signal.

This can be achieved by three methods: i) averaging across

all voxels, ii) PCA on all voxels and projection of the first

principal component, iii) CCA on all voxels with its delayed

version and projection of the most autocorrelated component

[17]. We use PCA and CCA here to extract representative

signals for interacting ROIs as follows:

PCA: For a V dimensional mean-free ROI time-series X
and Y of N observations, for example X having linear

transformation

Pc = u1X1 + u2X2 + ....+ uV XV = uX (9)

we obtain the first principal component xk and yk for each

ROI by solving the following maximization problem [18],

with weight vector u maximizing the variance of given ROI

data

L(λ, uv) = u′

vX
′

vXvuv − λ(u′

vuv − 1)− φ(u′

vuw) (10)

Based on the representative signals, the inter-ROI interaction

can then be modeled as the following autoregressive models

based on AR(p) and ARX(p, q) approach as in [13]

xk =

p
∑

j=1

ajxk−j + ǫk

xk =

p
∑

j=1

ajxk−j +

q
∑

l=1

blyk−l + ǫ′k (11)

where ǫk and ǫ′k are i.i.d N(0, σ̂2

1
) and N(0, σ̂2

2
), respec-

tively.

CCA: Consider V dimensional mean-free ROI time-series X
of N observations, k = 1, ..., N , and its one-sample delayed

version Xk−1, their canonical variates are as

F = r1X1 + r2X2 + ....+ rV XV = rX

G = s1Xk−1,1 + ....+ sV Xk−1,V = sXk−1 (12)

(12) gives a representative time-series x′

k for ROI X , where

canonical variates r and s which maximizes the correlation

for X and Xk−1 can be obtained by solving the following

maximization problem [20]

L(λ, r, s) = r′X ′Xk−1s−
λ

2
(r′X ′Xr − 1)

−
ρ

2
(s′X ′

k−1
Xk−1s− 1)

(13)
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Similarly a representative time-series y′k can be obtained for

ROI Y . Based on the representative signals, the inter-ROI

interaction can then be modeled similarly as in (11)

x′

k =

p
∑

j=1

a′jx
′

k−j + κk

x′

k =

p
∑

j=1

a′jx
′

k−j +

q
∑

l=1

b′ly
′

k−l + κ′

k (14)

where κk and κ′

k are i.i.d N(0, σ̂2

3
) and N(0, σ̂2

4
), respec-

tively.

Causality:After extracting the representative time-series for

each ROI using PCA and CCA, the causal interaction from

X → Y at time k is calculated from the discrepancy between

the probability densities of AR(p) and ARX(p, q) as in

[13]. Based on these estimates, the univariate ROI causal

interaction C2 for PCA and C3 for CCA extracted time-series

are defined as the log of the ratio of the residual variances

for the regressions in (11) and (14).

C2(X ← Y ) = ln(σ̂2

1
/σ̂2

2
) (15)

C3(X ← Y ) = ln(σ̂2

3
/σ̂2

4
) (16)

with Ci(X → Y ) > Ci(Y → X) for i ∈ {2, 3} implies that

the ROI X is predominantly acting as a source and Y as a

target.

IV. APPLICATION RESULTS

A. Simulated fMRI Data

In order to test and validate these methods for identifying

the directional interaction in fMRI data, 10 realizations of

two ROIs with 20 time series of 600 samples each were

simulated. For each time-series the stimulus sequence is a

realization of alternating blocks of activity [40 s] and rest [60

s] with short volume repetition time [TR = 1s] that is suitable

to recover directed neuronal influences [1]. These ROI time-

series were generated with two autoregressive processes

where the second being driven by the first according to the

following model

{

xk = zk + 0.5xk−2 + ǫk
yk = zk + 0.3yk−1 + 0.4f(xk−1) + ǫ′k

(17)

Where zk is the voxel response at time instant k obtained

by convolving stimulus sequence with the canonical HRF

used by SPM software [19] . The function f is used to

introduce the type of interaction. For linear interaction, f is

set to identity whereas a nonlinear interaction is introduced

by setting f to exp(x). The components ǫk and ǫ′k represent

i.i.d. Gaussian noise N(0, σ2 = [0.164 : 0.164 : 3.28])
for both linear and non-linear interactions. Both time-series

were generated based on model (17) using zero initial con-

ditions. (15) and (16) were used to calculate the directional

interaction for univariate method with the known models.

In practice the order of these models have to be estimated
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Fig. 1. Activation slice

using the AICc criterion for example [3], [21] or KICc

[22]. Similarly, (8) was used to find directional interaction

for multivariate method assuming an order p = q = 1.

Though VAR(1) is proven to give causality measure in fMRI

data, it can be further tested by VAR model selection such

as [4]. Figure 2 illustrates the causality measure robustness

and gain brought by VAR(1) in comparison to univariate

approach. With both the linear and nonlinear interactions,

there is a clear asymmetry in directional interaction with

multivariate VAR(1) approach, in favor of the direction X →
Y indicating that X causes Y.

B. Real fMRI Data

An experiment was performed to investigate regions of the

brain that responded to visual motion (using the ’attention to

visual motion fMRI’ data set) [15]. A 2 Tesla MAGNETOM

Vision system (Siemens, Erlangen) whole body MRI system

with a head volume coil was used and contiguous multi-

slice T ∗

2
-weighted fMRI images (TE =40ms; 90 ms/image;

64 x 64 pixels) were obtained over a period of 5 min 22 s

producing 100 image volumes in each run. The subjects were

requested to look at a fixation point (size 0.3◦) in the middle

of a transparent screen and images were back projected onto

the screen using an LCD video-projector. 250 white dots

(size 0.1◦) were moved radially from the fixation point in

random directions towards the border of the screen, at a

constant speed of 4.7◦/s, where they vanished. The speed

of the moving dots was changed five times during each trial.

Subjects were then asked to indicate any change in speed.

This condition lasted 32.2 s, giving 10 multi-slice volumes

per conditions. Image processing and statistical analysis

were carried out using SPM8 and Matlab. As expected, the

activation detection task showed activation in V1, V5 and

SPC [15][2]. A single activated slice is shown in figure 1. The

characterization of the direction of attentional modulation

V1 - V5 was of interest. After dimensionality reduction

using PCA and CCA over selected 6 voxels from each ROI

V1 and V5, two time-series were generated for univariate

analysis. Choice of optimal order of the autoregressive fitting

models on both time series were obtained using AICc [3]. For
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Fig. 2. Information flow between two ROIs - Nonlinear interaction (top 3
subplots) and linear interaction (bottom 3 subplots)

Method V 1→V 5 V 5→V 1

PCA 0.14 0.05

CCA 0.14 0.07

VAR(1) 0.52 0.17

TABLE I

DIRECTIONAL INFLUENCE

taking the interrelationship between all voxel time-series into

account as a multivariate regional interaction, selected group

of voxels from ROI V1 and V5 were fitted with VAR/VARX

models of order 1. Relation (15) and (16) were used to com-

pute the directional interaction using the residual variances

for the fitted univariate regression models. Similarly, relation

(8) was used to compute the directional interaction using

the residual covariances for the fitted multivariate regression

models. The obtained values are reported in Table-1. Though

both methods confirm the forward attentional modulation

V 1 → V 5, multivariate approach based on VAR(1) is not

only better in quantifying the directional influence but also

waiving off the need for VAR model selection criterion.

V. CONCLUSION

In this paper, the problem of extracting true causal in-

teraction between activated brain regions from fMRI time

series measurements has been approached in univariate and

multivariate frameworks. Inter-ROI causality analysis has

been carried out using dimensionality reduction techniques

PCA and CCA; and as VAR modelling of the ROIs. Though

both univariate and multivariate methods have the potential

of extracting meaningful causality in the real fMRI data, mul-

tivariate VAR(1) method is robust in identifying true causal

interaction in low power fMRI signals. The performance and

effectiveness of these methods as tested on simulated and real

fMRI data reveal that VAR based causality is an efficient

measure for computing effective connectivity.
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