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Abstract—The current standard of clinical practice for patient
monitoring in most developed nations is connection of patients to
vital-sign monitors, combined with frequent manual observation.
In some nations, such as the UK, manual early warning score
(EWS) systems have been mandated for use, in which scores are
assigned to the manual observations, and care escalated if the
scores exceed some pre-defined threshold. We argue that this
manual system is far from ideal, and can be improved using
machine learning techniques. We propose a system based on
Gaussian process regression for improving the efficacy of existing
EWS systems, and then demonstrate the method using manual
observation of vital signs from a large-scale clinical study.

Index Terms—patient monitoring, Gaussian processes.

I. EARLY WARNING SYSTEMS

Patient monitoring systems have been deemed to suffer from
the “plague of pilots” [1], where many prototype systems have
been developed for tracking patient condition [2]–[4], and
yet little clinical evidence has been accumulated evaluating
their efficacy at scale [5], [6]. The gold standard for the
measurement and interpretation of vital signs remains man-
ual observations made by clinical staff; although continuous,
automatic systems have been developed for acquiring patient
data, there is seen as being a lack of robustness in the manner
in which the acquired data are subsequently processed and
used to support clinical practice [7]–[9]. Therefore, despite
the progress made in novel sensing devices, the standard of
care in most hospitals involves manual periodic observation of
patient vital signs.

Episodes of patient deterioration are frequently preceded by
periods of derangement in the vital signs [10], and guidance
has been produce in the UK mandating the use of manual
track-and-trigger or early warning score (EWS) systems [11].
Such methods are typically paper-based, although some elec-
tronic systems do exist (as we will describe in our clinical
study, later in this paper), and involve the assignment of
univariate scores to each vital sign, with scores increasing
from zero according to their “severity”. If any of the scores
assigned to each vital sign exceed a pre-defined threshold,
or if the sum of all scores exceeds another threshold, then
the patient is deemed to be in need of clinical review. The
disadvantage of such methods is that the scoring systems are
typically heuristic, and vary from hospital to hospital, and even
from ward to ward [12].

This paper introduces the use of Gaussian process regression
to set the analysis of patient physiology into a principled,

probabilistic time-series framework, in order to augment the
existing standard of care, in EWS systems, as described in II.

Automated approaches to the analysis of continuously-
acquired data, rather than the EWS data considered by this
work, have been proposed using a number of techniques.
These include Kalman filtering [13], neural networks [14],
and density estimation using the Parzen windows method [15].
The difficulty of such systems is in their handling of signal
artefact, due to sensor noise and movement of the patient.
The typical method of coping with such periods of artefact is
to replace the noisy or incomplete episodes of data with the
corresponding mean value of the vital sign over a population
of patients [16]. We will demonstrate that this conventional
method of mean-replacement biases analysis of the patient
towards “normality”, and that principled methods for coping
with episodes of missing or incomplete data can provide earlier
warning of physiological deterioration by avoiding this bias.

Section III presents initial clinical validation of the proposed
method using manual observations acquired from a large clin-
ical study that we have recently undertaken to provide much-
needed evidence in favour of the use of machine learning
methods in patient care. We conclude in section IV with
suggestions for future work.

II. GAUSSIAN PROCESS REGRESSION

Gaussian process regression (GPR) offers a framework
for performing inference using time-series data, in which a
probability distribution over a functional space is constructed.
By considering the time-series of patient observations to be a
function, we can perform inference upon them using the GPR
framework. This is particularly suited to the analysis of data
that may be sampled at irregular intervals, as with manual
observation data.

We provide a brief overview to set notation, where more
details may be found in [17]. For some observed dataset of
physiological data over time intervals X = {xi | i = 1 . . .m},
we define a GP prior distribution over latent (unobserved)
functions s = {s(xi) | i = 1 . . .m}, according to s(x) ∼
GP (µs(x), k(x,x

′)), here using a squared-exponential covari-
ance function k(x,x′) = σ2

s exp
(
−‖x−x

′‖2
2σ2

l

)
, where ‖ · ‖

is the `2-norm, where σl and σs are hyperparameters giving
the length-scale in the x-direction and the variance of s,
respectively, and where the mean function µs(x) = 0. We
define a set of observed target physiological data which are
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assumed to be generated from some latent function t =
{s(xi)+ε | i = 1 . . .m}, with ε ∼ N (0, σ2

t ) defining additive
Gaussian noise over the latent function s.

For this prior GP distribution over functions, we may
define the marginal likelihood (or “evidence”) for some set
of observed physiological data t given the set of inputs X,

p(t|X) =

∫
p(t|s,X) p(s|X) ds (1)

in which we have marginalised over the function values s,
using the GP prior distribution over functions p(s|X) ∼
N (µs(X), k(X,X)), and where the likelihood of the ob-
served targets p(t|s,X) ∼ N (s, σ2

t I). The log marginal
likelihood corresponding to the integral can be found in closed
form as a marginalised Gaussian, thanks to the consistency
property of the GP,

log p(t|X) = −1

2
t>(K + σ2

t I)
−1t − (2)

1

2
log |K + σ2

t I| −
n

2
log 2π (3)

where we have used the notation K = k(X,X). We can
perform a similar operation using posterior GPs, in which we
have taken into account our observed physiological data over
times X with their corresponding latent function values s and
target observations t. If we wish to evaluate a function over n
test points X∗ = {x∗,i | i = 1 . . . n}, we can apply a Bayesian
formulation [18] to predict the n-dimensional vector of target
physiological values t∗ corresponding to the test inputs X∗
using

p(t∗|X, t,X∗) =
∫
p(t∗|s∗) p(s∗|X, t,X∗) ds∗ (4)

p(s∗|X, t,X∗) =
∫
p(s∗|X, s,X∗) p(s|X, t) ds (5)

In the above, we have the likelihood p(t∗|s∗) = s(x∗) + ε
as before; we have the posterior GP p(s|X, t), which we will
consider below; and we have the joint posterior distribution
over all functions, conditioned on the observed training data,

p(s∗|X, s,X∗) ∼ N (µ∗,K∗) (6)

where the mean function and covariance matrix in the above
are, respectively,

µ∗ =E [ p(s∗|X, s,X∗) ]

=K(X∗,X)
[
K(X,X) + σ2

t I
]−1

t (7)
K∗ =K(X∗,X∗)−

K(X∗,X)
[
K(X,X) + σ2

t I
]−1

K(X,X∗) (8)

Due to the convenient analytical tractability of the multivariate
Gaussian distribution, the above integrals are determined in
closed form.

For any given training set of physiological data {X, t}, we
may therefore learn the posterior GP required in the above,
p(s|X, t), which is fully specified by its hyperparameters
σl, σs, and σt. The values of these hyperparameters have,

for the work described in this paper, been determined to be
those values that maximise the log marginal likelihood of
the targets, which incorporates a trade-off between model
fit and model complexity [17]. We have used the squared-
exponential covariance function for this preliminary proof-of-
concept work.

A further advantage of a Bayesian framework is the explicit
incorporation of uncertainty into the model, which allows us to
take a patient-specific approach in which a GP is constructed
using data from each individual patient. After estimation of
the posterior GP, after observing some patient data X, we can
make predictions about the distribution of the latent function
t corresponding to the time-series of the physiological data at
any points in time X∗.

III. RESULTS

A. Clinical Study

We studied a group of 200 post-operative patients, during
their recovery from cancer surgery in a step-down ward of
the Oxford University Hospitals NHS Trust, Oxford. This
study was approved by the local research ethics committee.
The study involved the collection of manual observation of
vital sign data, which form the current standard of care, in
accordance with recommended clinical guidelines [10].

This group of patients has a high risk (≈ 20%) of post-
surgical complications, which typically result in an unexpected
admission to the Intensive Care Unit (ICU), and which have a
high associated risk of mortality. The goal of the EWS system
is to track patient condition such that the early warning signs
of deterioration may be identified and acted upon.

B. Data Collection

Manual measurements of heart rate (HR), breathing rate
(BR), blood pressure (BP), and peripheral oxygen saturation
(SpO2) were made by the ward staff as part of the current
standard of care. All manual observations were recorded using
the paper-based system in use throughout the hospital at
the time of the study. A subset of these observations of
patient physiology were entered into a patient PDA, carried
by the ambulatory patients, and which were then automatically
transmitted to a central archive for storage.

One of the obstacles to the analysis of the very large
datasets of patient physiology acquired from clinical studies
is that the data are typically not in a form amenable to
analysis, and exhaustive labelling for such quantities of data
is typically hard to acquire. The 16,503 manual observations
of vital signs from this study were transcribed into electronic
form by two independent teams of research nurses, who were
trained in data entry. Disagreements between the two datasets,
along with obvious errors, were automatically identified by a
reconciliation program, the results of which were presented to
a third, independent team of adjudicators who compared both
electronic transcriptions with the original paper-based data to
provide a final, reconciled dataset over all 16,503 vectors of
vital signs, for the 200 patients in the study.
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Fig. 1. Histograms of MSE for 200 patients obtained by handling periods
of artefact and signal incompleteness using (a) replacement by the population
mean; (b) replacement by the patient-specific mean; (c) GP regression; (d)
SVR

Fig. 2. Personalised GP showing output for the HR and BR time-series
of a patient with a period of missing data. The mean function of the GP
is shown during periods of incomplete data by the circles, with two standard
deviation on the posterior distribution at each test point shown in grey. Manual
observations are shown as solid lines.

C. Results from GPR

The datasets of manual observational data for each patient
were randomly partitioned 75%:25% into training and test sets,
respectively. Patient-specific GPs were constructed using the
training set for each patient, where 10-fold cross-validation
was used to determine the values of the GP hyperparameters
(section II). For comparison, a support vector regressor (SVR)
was also trained using the same data and cross-validation
methodology; this latter is a kernel-based, non-probabilistic
method that is popularly used for regression problems in the
literature [19], and which is not described in further detail here
for brevity.

The mean-square error (MSE) between each patient’s set
of test data and the regression of the personalised GPR and
SVR models was then determined, and compared with MSE
obtained by use of the means of each vital sign obtained
from the the entire patient population (E1) and the patient-
specific mean (E2). These latter two means represent the
existing practice of replacing periods of missing data with
patient means, which are typically population-based means
(E1). We have included the patient-specific mean (E2) as a
slight refinement of existing practice, for comparison with the

TABLE I
MSE STATISTICS ON INDEPENDENT TEST DATA FOR MANUAL

OBSERVATIONS OVER 200 PATIENTS

E1 E2 EGP ESV M

µE 1.89 1.14 0.95 0.89
σE 0.93 0.27 0.29 0.31

IQRE 0.94 0.17 0.21 0.25

principled GPR and non-probabilistic SVR methods.
Figure 1 shows MSE values for the GP, the SVR, and use

of the population- and patient-specific mean, where summary
statistics for each are given in table I. The latter shows
the mean MSE, one standard deviation in MSE, and the
interquartile range in MSE over the 200 patients as µE , σE ,
and IQRE , respectively, for all four methods. It may be seen
that the personalised GP and SVR methods result in the lowest
overall MSE on the independent test sets for each patient, over
all 200 patients.

There are similarities between the formulations of the GP
and SVR methods [17], but we note that the probabilistic
approach of the former is preferable to that of the latter when
dealing with time-series in which high levels of uncertainty
must be treated in a principled manner. This advantage may
be seen in figure 2 in which the GP predicts the distribution
of missing physiological data, rather than simply selecting a
point-estimate, as would the SVR. The improved MSE on the
independent test sets for each patient demonstrates that both
the personalised GPR and the SVR models can accurately
model the behaviour of our physiological data acquired from
manual patient observation. In periods of incomplete data,
these accurate regressions can, therefore, be used to estimate
the true value of the data and, in the case of the personalised
GP, the distribution over those estimated values.

D. Improved Early Warning

This section presents a case study demonstrating the manner
in which the GPR framework can be used to improve the early
warning of patient deterioration associated with manual vital
sign observations, when compared with the existing method
of replacing periods of incomplete data with a (population- or
patient-based) mean value.

Figure 3 shows time-series of manual observational data for
a patient who suffered a critical event at t ≈ 4days, which re-
sulted in their unplanned admission to the ICU, and for whom
we require early warning of physiological derangement. For
some time prior to the event, however, records of physiological
data were incomplete. The illustration shows the application
of a patient-specific GPR model, with hyperparameters trained
using data from the patient’s previous days’ stay on the
ward (using 10-fold cross-validation, as before). The dynamics
of this patient’s vital signs have been learned by the GPR
model, which effectively describes those sets of functions that,
based on the patient’s previous dynamics, best describe (to
0.95 probability) the expected distribution of the time-series
function for each vital sign during the period of missing data.
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Fig. 3. Case study showing manual observational data (solid lines) from an
example patient who suffered a critical patient event at around t ≈ 4 days.
Personalised GP regression mean-function outputs are shown by circles, with
confidence intervals as coloured error-bars. The lower plot shows novelty
scores from the method of [20] with and without personalised GP regression
in red and blue, respectively, which have novelty alerts at times tGP and t0,
respectively.

We have previously proposed a novelty detection method
[20] which maps physiological vital-sign observations onto
novelty scores, with higher scores indicative of “severity”, a
machine learning version akin to that of the EWS methodology
describes earlier. The figure shows novelty scores output
by this method when presented (i) with periods of missing
data replaced by the mean of that vital sign in accordance
with existing practice, and (ii) with periods of missing data
estimated by the GPR for this patient. It may be seen that
conventional method (i) causes a novelty alert to occur at
t0 ≈ 3.6 days, shown in the figure. Use of the GPR method
(ii) causes a novelty alert to occur at tGP ≈ 3.2 days, which
is an increase in early warning of patient deterioration of
over 9 hours, and which can aid greatly in interpreting patient
condition.

This behaviour is caused by the GP providing robust esti-
mates of physiological data prior to the event, which would
otherwise have been replaced by the population mean for each
channel of data, and which would therefore have caused the
patient to look incorrectly “normal” for an extended period.

IV. DISCUSSION

We have proposed a principled, probabilistic, patient-
specific GPR method for modelling time-series of manual
observational data, and demonstrated proof-of-concept using
both MSE over 200 independent test sets (acquired from a
clinical study) and in a case study, showing that novelty
detection methods can benefit from using GPR methods to
provide more reliable input data, that can better cope with
periods of incomplete data. We note that this work has been
retrospective, and that on-line use of the GPR should be
formulated and tested in a clinical environment. However, the

large scale of the clinical study described in this paper goes
some way to addressing the lack of clinical evidence for the
efficacy of machine learning methods in patient monitoring.
Future work will concentrate on fusing manual observations
with continuous data acquired from patient-worn body sensors.
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