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Abstract—Detection of precursory, seizure-related activity
in electroencephalograms (EEG) is a clinically important and
difficult problem in the field of epilepsy. Seizure detection
methods often aim to identify specific features and correlations
between preictal EEG signals that differentiate them from inter-
ictal/nonictal signals. Typically, these methods use information
from nonictal EEGs to establish detection thresholds, and do not
otherwise incorporate their characteristics into the detection. A
space-time adaptive approach is proposed to improve detection
of seizure-related preictal activity in scalp EEG, using multiple
patient-specific baseline signals to optimize the estimate of
the baseline covariance matrix. A simplified model of the
preictal EEG is assumed, which describes this signal as a linear
superposition of seizure-related activity and baseline activity
(treated as an interference signal). It is shown that when an
improved estimate of the baseline covariance is included in the
preictal detector, the true positive rate increases significantly
and also the false positive rate decreases significantly.

I. INTRODUCTION

Seizure prediction and early detection prior to clinical

onset are of significant clinical interest. For patients with

medically intractable epilepsy, accurate detection of seizure-

related activity in the preictal interval may significantly

increase their therapeutic options and accelerate the de-

velopment of novel, patient-specific approaches for seizure

prevention. Despite a large number of promising studies,

early seizure detection and/or prediction from electroen-

cephalographic (EEG) data, remain challenging problems in

the field [6]. Epileptic seizures are transient and dynamically

evolving events, with precursory seizure activity often staring

at least several minutes prior to clinical and/or electrographic

ictal onset, if not earlier [5]. However, seizure precursors may

be difficult to detect, particularly in scalp EEG recordings,

which are highly complex and noisy signals that measure

aggregate neural activity from multiple sources. Preictal and

ictal EEGs may, therefore, be superpositions of seizure-

related activity from the epileptogenic region, baseline neural

activations, contributions from unrelated sources and noise.

These contributions make it difficult for precursory seizure

activity to be identified in preictal EEGs.

Several seizure detection studies have used nonictal/inter-

ictal EEGs for comparison purposes, i.e., to assess the sensi-

This work was supported by the department of Radiology, Children’s
Hospital Boston (CS), the Harvard Clinical and Translational Science Center
(CS) (NIH Award #UL1 RR 025758), and NIH grant R01 NS073601 (BC)

C. Stamoulis is with the Departments of Radiology and Neurology
and the Clinical Research Center, Children’s Hospital Boston and Harvard
Medical School, Boston, MA 02115 USA caterina@mit.edu,

caterina.stamoulis@childrens.harvard.edu

B.S. Chang is with the Department of Neurology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston MA 02215

tivity and specificity of proposed algorithms and measures of

precursory activity to impending seizures, e.g., [14], [7], [2],

[1], [9]. These studies do not otherwise incorporate nonictal

signals into the detection of preictal seizure-related activity.

Yet, baseline neural activity may have a significant contribu-

tion to preictal, and possibly ictal EEG signals. Therefore,

methodologies that incorporate knowledge from baseline

signals to improve estimates of precursory seizure activity are

desirable. Space-time adaptive processing (STAP) is a set of

signal processing methods that simultaneously combine sig-

nals from an entire array of sensors and from multiple time-

intervals. STAP is widely used in radar, to improve target

detection in the presence of unrelated and interfering signals

[13], [4]. Although its main application to radar systems is

evidently very different from detection of seizure precursors,

the basic principles of STAP are relevant to a broad range of

signal detection and array processing problems. Therefore,

detection of seizure activity in preictal EEGs signals may be

thought of as an adaptive processing problem, with spatially

distributed and dynamic baseline activity as the interfering

signal, which is correlated in space and time. For improved

detection, information from multiple nonictal signals may

be incorporated as a priori information into processing. This

preliminary study investigated i) optimization of baseline

covariance using an adaptive approach to combine prior and

current sample estimates, and ii) the effects of this optimiza-

tion on improving the detection of precursory seizure signals.

II. METHODS

A. Electrophysiological Data

All data were recorded in the Clinical Neurophysiology

Laboratory of the Comprehensive Epilepsy Center at Beth

Israel Deaconess Medical Center. A standard international

10-20 clinical EEG system was used, with a referential

montage (channel Cz was selected as the reference channel).

All EEGs were sampled at 500 Hz. Five subjects with

diagnosed temporal lobe epilepsy, in the age range 33-47

years (µ=40.8, σ=5.2), were chosen from adult patients

admitted to the epilepsy monitoring unit for non-invasive

neurophysiological studies. All patients had least two com-

plete seizures and corresponding preictal intervals 30s or

longer (typically ∼2-3 min. All seizures occurred during

wakefulness. For each patient, at least five periods of non-

ictal EEG during wakefulness were selected, 30s -5 min

in duration and partially covering a long period of time

(several hours). All nonictal intervals were recorded more

than 12-24 hours remote from a clearly defined seizure. Ictal

onset and offset times were estimated using standard clinical
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methods of EEG interpretation. Table I summarizes patient

demographics and respective number of nonictal and preictal

segments analyzed in the study.

TABLE I

CLINICAL/DATA INFORMATION

Pat.# Age Etiology Preictal Nonictal

Segments Epochs

1 33 R-Mesial Sclerosis 7 9

2 43 Cryptogenic 5 6

3 42 Cryptogenic 11 5

4 47 L-Mesial Scleroris 9 6

5 39 Cryoptogenic 2 5

B. EEG preprocessing

Power-line noise was attenuated with a stopband filterbank

of 3rd order elliptical filters centered at the 60 Hz harmonics

of the noise, in the range 60-250 Hz, with a 1 Hz bandwidth,

20 dB attenuation in the stopband, and 0.5 dB ripple in

the passband. Signals were filtered in both forward and

reverse directions to eliminate potential phase distortions due

to the non-linear phase of the filter. Eye blinking-related

artifacts were suppressed using a matched-filtering approach

[8]. Interictal spikes in EEG signals that were localizable to

the region of seizure onset, were preserved, as they were

considered to be part of a patient’s non-ictal baseline.

C. Space-time adaptive processing

STAP is used to process dynamic data simultaneously

from an array of receivers (here the EEG electrodes). At

time t we obtain a snapshot of the entire EEG array:

~x(~r, t) = [x1(~r1, t), ...xN(~rN , t)]
T (1)

where N is the number of array elements (here N = 20), and

~ri their corresponding position vectors. In its simplest form,

detection of precursory seizure activity at snapshot t may be

expressed as a decision rule:

~x(~r, t) =~xb(~r, t) H0: no seizure activity

~x(~r, t) = α(t)~xs(~r, t)+~xb(~r, t) H1: seizure activity (2)

where ~xb is baseline activity, and includes inherent non-

neural noise, ~xs is seizure-related activity, and α(t) a time-

varying weight, since seizure activity is not constantly

present in EEG signals. Thus, in the presence of seizure

precursors, EEG signals may be expressed as a weighted

linear superposition of baseline and seizure-induced activity.

This is a simplistic model, as baseline activity may be

modulated by seizure precursors, and thus the two may

be coupled in ways that are not clearly understood to be

adequately modeled. However, in this preliminary study we

assumed a linear model that describes the preictal EEG

signal as a linear superposition of contributions from seizure-

related and baseline sources. Note that prior to ictal onset and

propagation of seizure activity to large areas of the brain,

the component ~xs may be restricted to a subset of electrodes

Ns ≤ N, e.g., those covering the epileptogenic region, i.e.,

the decision rule is spatio-temporally specific.

The first step in the detection of seizure precursors is to ob-

tain a robust estimate of the statistics of baseline activity that

may be used in adaptive processing of preictal signals. As

previously stated, ~xb(~r, t) is a superposition of uncorrelated

baseline neural s(t) and noise ν (assumed to be normally

distributed), i.e.,~xb =~sb(~r, t)+ν(~r, t), ν(~r, t)∼N (0,Σ). The
corresponding covariance matrix Rb is, therefore, given by:

Rb = E{~xb~x
T
b }= Rs+Rν (3)

At each time point and/or coherent processing interval, an

estimate of Rb may be obtained from the data. In an unrelated

study, [12] proposed a method for combining covariance

matrix estimates to obtain a optimum estimate of Rb in a

mean-squared error (MSE) sense. Therefore, assuming that

we have initial and subsequent estimates R̂b,0 and R̂b,1 of the

baseline covariance, we can obtain a new estimate as:

R̃b = a0R̂b,0+ a1R̂b,1 (4)

with a0, a1 > 0. For every new sample covariance matrix

R̂b,k, a new R̃b can then be obtained by linearly combining

weighted previous estimates with R̂b,k according to Equation

4. Our goal is then to find a0 and a1, such that the MSE of R̃b

is minimized, where MSE = E{‖R̃b−Rb‖
2}, ‖·‖ denotes the

Euclidean norm, and the true baseline covariance matrix Rb

is unknown. We assume that the sample covariance matrix

is an unbiased estimate, i.e., E{R̂b}= R.

The following formulas for estimating coefficients a0 and

a1 have been derived in [12]. Details on these expressions

may be found there. In this study they were used to obtain a

robust estimate of the baseline covariance matrix of ~xb(~r, t)
from multiple nonictal EEG segments.

â1 =
γ̂

γ̂ + ρ̂
(5)

ĉ=
tr(Rb,0R̂b,1)

‖Rb,0‖2
(6)

ρ̂ =
1

T 2

T

∑
t=1

‖xb(t)‖
4−

1

T
‖R̂b,1‖

2 (7)

γ̂ = ‖ĉRb,0− R̂b‖
2 (8)

â0 = ĉ(1− â1) (9)

where tr(·) denotes the matrix trace, and T is the length of

the processing interval.

Once a robust estimate R̃b has been obtained, the next step

is to define the space-time processor that combines the spatial

samples from the EEG array with the temporal samples in

the processing interval [t, t+T ]. The signature of the seizure
precursory signal xs is entirely unknown. The space-time

processor increases the gain in the range and direction of

xs and suppresses unrelated signals in other directions. We

assume that xs is a seizure-precursor steering vector, i.e.,

~xs(~r,ωs, t) = [1e jωst ...e j(Ns−1)ωst ]T (10)

where Ns, the number of electrodes that measure the pre-

cursory signal. For simplicity it is assumed that Ns =N, i.e.,
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all electrodes (N=20). The characteristic precursor frequency

ωs is also unknown. In a previous study, we estimated

transient precursory signals with characteristic frequencies

in the range 100-180 Hz, but this frequency varied be-

tween individual precursors [9]. Therefore, each preictal

EEG signal was segmented into processing intervals, and

decomposed into its dominant components using a modified

mode decomposition approach [3], [10], [11]. A separate

steering vector was estimated at each dominant frequency

and used in the detection. Seizure activity was not decoupled

from baseline activity in these decompositions, and thus the

estimated ωs may not represent a true precursor (target)

frequency. However, in the absence of a priori knowledge this

was the only available data-derived estimate. The baseline

covariance matrix R̃, data snapshot~x(~r, [t, t+T ]) and steering
vector in Equation 10 were then used in an adaptive matched-

filter detector with decision rule:

~xs(ωs)R̃
−1~x

~xs(ωs)R̃−1~xs
≶

H0
H1

η (11)

where η is a detection threshold, which varied between

patients.

III. RESULTS

In previous studies [9], we have estimated that baseline

neural dynamics in the epileptic brain vary with a period of

∼4-5 s, in which signal stationarity may also be assumed.

We, therefore, assumed a 5 s sliding window for coherent

processing , and estimated all covariance matrices in each

interval. New coefficients a0 and a1 were estimated sequen-

tially. The proposed optimization was performed on the data

of each patient individually.

A. Estimation of baseline covariance from multiple segments

For each patient, we obtained robust estimates of the

baseline covariance matrix, by updating this matrix using

previous estimates as prior knowledge and estimating new

coefficients a0 and a1 for every new snapshot, according to

Equation 4. Figure 1 shows examples of sample covariance

matrices and Figure 2 shows the variation of the coefficients

with increasing number of samples. As expected, when a0
increases, a1 decreases and vice versa. As the estimate

of the baseline covariance matrix improved, higher spatial

correlations between some EEG signals were estimated.

B. Detection of preictal seizure precursors

To assess the performance of the detector, a set of preictal

intervals and nonictal intervals were shuffled together. We

assumed that true positives corresponded to detections within

any of the preictal intervals, and false positives to detections

outside these intervals. 1 s bins were processed through

the detector. Figures 3 and 4 show the performance of

the detector with and without an optimized estimate of the

baseline covariance.

Overall, optimization of the baseline covariance matrix

increased the true positive rate (TPR) by at least 7% and

decreased the false positive rate (FRP) by at least 13%. In

some patients, this optimization resulted in a significantly

Fig. 1. Sequential estimates of the baseline covariance matrix by combining
previous estimates (prior knowledge) with new sample estimates, after 10,
40, 80, 120 new segments (from top left to bottom right). The latter panel
shows the final covariance estimate.

Fig. 2. Variation of coefficients a0 and a1 for linear combination of baseline
covariance matrices with increasing number of samples.

increase in TRP of ∼34%. Therefore, a large number of non-

ictal signals covering long periods of time (or continuously

recorded baseline EEGs for several hours), may be used to

significantly improve detection of preictal seizure precursors.

IV. DISCUSSION

We have proposed an adaptive space-time processing

approach for detection of seizure-related activity in preictal

EEGs, using prior information from nonictal signals to obtain

robust estimates of the necessary baseline (interference)

covariance matrix. We have shown that optimization of this

matrix results in a significant improvement in detection, at

least in the case of the adaptive matched-filter detector. Being

preliminary, this study only assessed the relative performance

of this detector. We have applied this approach to 5 patients

with multiple nonictal and preictal signals, and have shown
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Fig. 3. Detector performance estimated from 4 preictal epochs (132,
156, 162 and 120 segments, respectively), without optimization (red) and
following optimization (black), for patient #1 in Table 1. Each data point
corresponds to a distinct segment and channel.

Fig. 4. Detector performance estimated from 2 preictal epochs (120 and
180 1s segments, respectively) without optimization of the baseline (red)
and following optimization (black). for patient # 5 in Table 1. Each data
point corresponds to a distinct segment.

at least a 7% increase in the true positive rate and at least

13% decrease in the false positive rate. There are several

additional optimizations that may improve these detections

further. For example, in the absence of a priori knowledge

of the spectral characteristics of seizure-related signal con-

tributions to preictal intervals, we decomposed these signals

into dominant modes with distinct characteristic frequencies.

However, some of these frequencies may be associated with

components that are unrelated to seizure activity. Therefore,

in a extended study, comparison of multiple baseline and

preictal spectra may improve the estimation of spectral peaks

associated primary with non-baseline, and thus potentially

with seizure-related activity. Finally, since the signature(s)

of seizure precursors are a priori unknown, the performance

of several detectors may be compared to identify one with

the highest sensitivity and specificity to seizure activity.

Nevertheless, despite being preliminary this study presents a

promising approach to improve detection of seizure precur-

sors, which may ultimately facilitate therapeutic intervention

for seizure prevention.
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