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Abstract—Our previously developed locomotion-mode- 

recognition (LMR) system has provided a great promise to 

intuitive control of powered artificial legs. However, the lack of 

fast, practical training methods is a barrier for clinical use of 

our LMR system for prosthetic legs. This paper aims to design a 

new, automatic, and user-driven training method for practical 

use of LMR system. In this method, a wearable terrain detection 

interface based on a portable laser distance sensor and an 

inertial measurement unit (IMU) is applied to detect the terrain 

change in front of the prosthesis user. The mechanical 

measurement from the prosthetic pylon is used to detect gait 

phase. These two streams of information are used to 

automatically identify the transitions among various locomotion 

modes, switch the prosthesis control mode, and label the 

training data with movement class and gait phase in real-time. 

No external device is required in this training system. In 

addition, the prosthesis user without assistance from any other 

experts can do the whole training procedure. The pilot 

experimental results on an able-bodied subject have 

demonstrated that our developed new method is accurate and 

user-friendly, and can significantly simplify the LMR training 

system and training procedure without sacrificing the system 

performance. The novel design paves the way for clinical use of 

our designed LMR system for powered lower limb prosthesis 

control. 

I. INTRODUCTION 

YOELECTRIC (EMG) pattern recognition (PR) has been 

widely used for identifying human movement intent to 

control prostheses [1-4]. The PR strategy usually consists of 

two phases: a training phase for constructing the parameters 

of a classifier and a testing phase for identifying the user 

intent using the trained classifier. Our previous study has 

developed a locomotion-mode-recognition (LMR) system for 

artificial legs based on a phase-dependent PR strategy and 

neuromuscular-mechanical information fusion [3, 5]. The 

LMR system has been tested in real-time on both able-bodied 

subjects and lower limb amputees. The results have shown 

high accuracies (>98%) in identifying three tested locomotion 

modes (level-ground walking, stair ascent, and stair descent) 

and tasks such as sitting and standing [5-6].  

 One of the challenges for applying the designed LMR 

system to clinical practice is the lack of practical system 

training methods. A few PR training methods have been 
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developed for control of upper limb prosthesis, such as 

screen-guided training (SGT) [7-8], where users perform 

muscle contractions by following a sequence of 

visual/audible cues, and prosthesis-guided training (PGT) [9], 

where the prosthesis itself provides the cues by performing a 

sequence of preprogrammed motions. However, neither SGT 

nor PGT can be directly adopted in the training of LMR 

system for lower limb prostheses because the computer and 

prosthesis must coordinate with the walking environment to 

cue the user to perform locomotion mode transitions during 

training data collection. Currently the training procedure for 

the LMR system is time consuming and manually conducted 

by experts. During the training procedure, experts cue the 

user's actions according to the user’s movement status and 

walking terrain in front of the user, switch the prosthesis 

control mode before the user steps on another type of terrain, 

and label the collected training data with movement class 

manually using an external computer. Such a manual 

approach significantly challenges the clinical value of LMR 

because usually the experts are not available at home.   

 To address this challenge, this paper aims to design an 

automatic and user-driven training method for the LMR 

system. The basic idea is replacing the expert with a smart 

system to collect and automatically label the training data for 

PR training. Our design significantly simplifies the training 

procedure, and can be applied anytime and anywhere, which 

paves the way for clinical use of the LMR system for powered 

lower limb prosthesis control.  

II. AUTOMATIC TRAINING METHOD 

The LMR system for artificial legs is based on 

phase-dependent pattern classification [4-5], which consists 

of a gait phase detector and multiple sub-classifiers 

corresponding to each phase. In this study, four gait phases 

are defined: initial double limb stance (phase 1), single limb 

stance (phase 2), terminal double limb stance (phase 3), and 

swing (phase 4) [5]. In the LMR system training, the EMG 

signals and mechanical forces/moments are the inputs of the 

LMR system [4] and segmented by overlapped analysis 

windows. For every analysis window, features of EMG 

signals and mechanical measurements are extracted from 

each input channel and concatenated into one feature vector. 

The feature vector must be labeled with the correct movement 

class and gait phase to train individual sub-classifiers.  

The previous approach labels the training data with 

locomotion mode (class) and gait phase by an experimenter 
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manually. In this design, we replace the experimenter by a 

smart system that (1) automatically identifies the transition 

between locomotion modes based on terrain detection sensors 

and algorithms, (2) switches the control mode of powered 

artificial legs, (3) labels the analysis windows with the 

locomotion mode (class index) and gait phase, and (4) trains 

individual sub-classifiers. Our designed system consists of 

three parts: a gait phase detector for identifying the gait phase 

of the current analysis window, a terrain detection interface 

for detecting the terrain in front of the user, and a labeling 

algorithm to label the mode and gait phase of current data. 

To label every analysis window with locomotion mode 

(class index), it is important to define the timing of mode 

transition. The purpose of the LMR system is to predict mode 

transitions before a critical gait event for safe and smooth 

switch of prosthesis control mode. Our previous study has 

defined this critical timing for each type of mode transition [4, 

6]. In order to allow the LMR system to predict mode 

transitions before the critical timings, the transition between 

locomotion modes is defined to be the beginning of the single 

stance phase (phase 2) immediately prior to the critical timing 

during the transition [4]. 

1) Gait Phase Detection: The real-time gait phase 

detection is implemented by monitoring the vertical ground 

reaction force (GRF) measured from the 6 DOF load cell. The 

detailed algorithm can be found in [5]. 

2) Terrain Detection Interface: Because the sequence of 

the user’s locomotion mode in the training trials is 

predefined, the goal of the terrain detection interface is not to 

predict the unknown terrain in front of the subject, but to 

detect the upcoming terrain change in an appropriate range of 

distances to help identify the transition between the 

locomotion modes.  

Fig. 1 shows the sensor setup of the terrain detection 

interface. A portable laser distance sensor and an inertial 

measurement unit (IMU)  are placed on the prosthesis user's 

waist as suggested in [10], because this sensor configuration 

has been demonstrated to provide stable signals with very 

small noises and good performance for recognizing terrain 

types. Before the training procedure starts, a calibration 

session is conducted first to measure a few parameters for 

later use in the training process. During calibration, the user 

walks at a comfortable speed on the level-ground for about 30 

seconds. The average vertical distance from the laser sensor 

to the level ground ( H ) and the average step length (
LS ) of 

the user are measured.  

Three types of terrains have been investigated in this study, 

including terrains that are above current negotiated terrain 

(upper terrain), terrains with the same height as the current 

terrain (level terrain), and terrains that are below the current 

terrain (lower terrain). The terrain types can be discriminated 

by a simple decision tree as shown in Fig. 2. In Fig. 2, )(
~

th  

denotes the estimated height of the terrain in front of the 

subject, which can be calculated by )(cos)()(
~

ttdHth  . 

Here )(td  denotes the distance measured from the laser 

sensor; )(t  is the angle between the laser beam and the 

vertical direction, which can be obtained from the IMU; H  
is 

the average vertical distance from the laser sensor to the 

terrain measured in the calibration session. 
1hT  and 

2hT
 
in Fig. 

2 represent the thresholds that distinguish the three terrain 

types. To reduce possible miss identifications, only the 

decisions in phase 1 (i.e. initial double limb stance phase) of 

each stride cycle are considered for detection of terrain 

change. 

In order to accurately identify the transitions between 

consecutive movement tasks in real-time, the detection of 

terrain alteration must happen within the stride cycle 

immediately prior to the transition point. To meet this 

requirement, the initial angle between the laser beam and the 

vertical direction (
init ) and the thresholds 

1hT  and 
2hT  need 

to be chosen appropriately. As shown in Fig. 1(a) and (b) for 

the terrain alterations from level ground to up/down stair, in 

order to make sure the subject is within the prior cycle to the 

transition point when the terrain alteration is detected, by 

assuming the variation of   during level ground walking is 

very small, the acceptable range of 
init  can be estimated by
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For Fig. 1(c) and (d), which represent the terrain alterations 

from up/down stair to level terrain, the terrain alterations 

must be detected within the last step. To satisfy this condition, 

1hT  and 
2hT  

need to be less than the height of one stair step.  

3) Labeling Algorithm: The gait phase of every analysis 

 
Fig. 1.  Four types of terrain alterations investigated in this study. 

 

 
Fig. 2.  The decision tree that discriminates the terrain types. 
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window is directly labeled with the output of the gait phase 

detector. On the promise of detecting all the terrain alterations 

in the required ranges by the terrain detection interface, the 

transition point between locomotion modes is identified as 

the first analysis window in phase 2 immediately after the 

expected terrain change is detected. The transition point from 

standing to locomotion modes can be automatically identified 

without the information of terrain type, which is the first 

analysis window immediately after toe-off (the beginning of 

phase 2). For two consecutive movement modes, the analysis 

windows before the transition point are labeled with the 

former movement class, and the windows after the transition 

point are labeled with the latter movement mode.  

III. PARTICIPANT AND EXPERIMENTS 

A. Participant and Measurements 

This study was conducted with Institutional Review Board 

(IRB) approval at the University of Rhode Island and 

informed consent of subjects. One male able-bodied subject 

was recruited. A plastic adaptor was made so that the subject 

could wear a prosthetic leg on the right side. 

Seven surface EMG signals were collected from the thigh 

muscles on the subject's right leg including adductor magnus 

(AM), biceps femoris long head (BFL), biceps femoris short 

head (BFS), rectus femoris (RF), sartorius (SAR), 

semitendinosus (SEM), and vastus lateralis (VL). The EMG 

signals were filtered between 20 Hz and 450 Hz with a 

pass-band gain of 1000. Mechanical ground reaction forces 

and moments were measured by a 6 degree-of-freedom 

(DOF) load cell mounted on the prosthetic pylon. A portable 

optical laser distance sensor and an inertial measurement unit 

(IMU) were placed on the right waist of the subject. The laser 

distance sensor could measure a distance ranging from 300 

mm to 10000 mm with the resolution of 3 mm. The EMG 

signals and the mechanical measurements were sampled at 

1000 Hz. The signals from the laser sensor and the IMU were 

sampled at 100 Hz. The input data were synchronized and 

segmented into a series of 160 ms analysis windows with a 20 

ms window increment. For each analysis window, four 

time-domain (TD) features (mean absolute value, number of 

zero crossings, waveform length, and number of slope sign 

changes) were extracted from each EMG channel [11]. For 

mechanical signals, the maximum, minimum, and mean 

values calculated from each individual DOF were the 

features. Linear discriminant analysis (LDA) [12] was used as 

the classification method for pattern recognition. The system 

were implemented in Matlab on a PC with 1.6GHz Xeon CPU 

and 2GB RAM. 

B. Experimental Protocol 

In this study, four movement tasks (level-ground walking 

(W), stair ascent (SA), stair descent (SD), and standing (ST)), 

and five mode transitions (ST→W, W→SA, SA→W, 

W→SD, and SD→W) were investigated. An obstacle course 

was built in the laboratory, consisting of a level-ground walk 

way, 5-step stairs with the height of 160 mm for each step, a 

small flat platform, and an obstacle block (300 mm high and 

250 mm wide). 

The experiment consisted of three sessions: calibration 

session, automatic training session, and real-time testing 

session. Before the training started, the calibration session 

was conducted to measure the average vertical distance from 

the laser sensor to the level ground ( H ) and the average step 

length (
LS ) of the subject. During calibration, the subject 

walked on the level-ground at a comfortable speed for 30 

seconds. H  and 
LS  

were measured to be 980 mm and 600 

mm, respectively. Because 
1hT  and 

2hT  
need to be less than 

the height of one stair step (160 mm) as explained in Section 

II,
 1hT  and 

2hT  were set to -120 mm and 120 mm, respectively. 

From (1) and (2) derived in Section II , the estimated range of 

init  was calculated to be (19, 50) degree, and 
init  was set to 

42 degree. 

During training, the subject was asked to perform a 

sequence of predefined movement tasks. The subject began 

with standing for about four seconds, switched to 

level-ground walking on the straight walkway, transited to 

stair ascent, walked on the platform with a 180 degrees turn, 

transited to stair descent, and switched back to level-ground 

walking on the walkway, stopped in front of the obstacle, 

turned 180 degrees, and repeated the previous tasks in the 

same way for two more times. In this training trial, besides the 

movement tasks investigated in this study, there were 

movements not wanted to be included in the training dataset, 

such as turning in front of the obstacle, and walking and 

turning on the platform. These movements were labeled as 

"not included" (NI) mode.  

After training, ten real-time testing trials were conducted to 

evaluate the performance of the LMR system. Each trial 

lasted about one minute. All the investigated movement tasks 

and mode transitions were evaluated in the testing session.  

IV. RESULTS & DISCUSSION 

In the training trial, the subject took about 225 seconds to 

complete all the movement tasks. After the subject finished 

all the tasks, only 0.11 second was further spent to train the 

classifiers. All the terrain alterations were accurately 

identified and all analysis windows were correctly labeled. 

Fig. 3 shows the automatic labeling of locomotion modes in 

part of the training trial. It is observed from the figure that all 

terrain alterations were recognized at the beginning of phase 1 

during the transition cycle, which means the actual terrain 

changes were detected before phase 1 and within the stride 

cycle prior to the transition. The transition points between 

consecutive tasks were accurately identified at the beginning 

of phase 2 during the transition cycle. All movement tasks 

were labeled with the correct class modes. 

The overall classification accuracy across 10 real-time 

testing trials was 97.64%. For all the 10 trials, no missed 

mode transitions were observed. The user intent for mode 

transitions was accurately predicted 103-653 ms before the 

critical timing for switching the control of prosthesis. The 
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results indicate that the LMR system using automatic training 

strategy provides a comparable performance with the system 

using previous training method. 

Table 1 summarizes the comparison between our new 

automatic training method and the previous training method. 

From the table we can see the new training method can 

significantly simplify the training procedure and shorten the 

total training time. 

V. CONCLUSION 

In this paper, an automatic, user-driven training strategy 

has been designed and implemented for classifying 

locomotion modes for control of powered artificial legs. The 

smart system can automatically identify the locomotion mode 

transitions based on a terrain detection interface, switch the 

prosthesis control mode, label the training data with correct 

mode (i.e. class index) and gait phase in real-time, and train 

the pattern classifiers in LMR quickly. The preliminary 

experimental results on an able-bodied subject show that all 

the analysis windows in the training trial were correctly 

labeled in real-time and the algorithm training process was 

accomplished immediately after the user completed all the 

movements. Compared with the system using traditional 

training strategy, our new training method can significantly 

simplify the training system and procedure, be easily operated 

by a naïve user, and shorten the total training time without 

sacrificing the system performance. These results pave the 

way for clinically viable LMR for intuitive control of 

prosthetic legs. 
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Fig. 3.  Automatic labeling of locomotion modes in part of the training trial. 

 

Table 1.  Comparison between the new automatic training 

method and the previous training method 

 New Automatic Training Traditional Training 

Connection to 

external 

device 

A laser distance sensor and an 

IMU are required, which are 

both portable, and can be 

integrated into the prosthesis 

system in the future 

An external computer is 

required. 

Requirement 

of extra 

manpower 

No. A professional experimenter 

is required. 

Total training 

time 

30 s calibration time for 

measuring a few parameters; 

 

225 s for performing 

movement tasks; 

 

0.11 s for the rest training 

process; 

225 s for performing 

movement tasks; 

 

24 s for offline processing of 

training algorithm; 

 

At least 10 minutes for 

interacting with the 

experimenter, and manual 

data labeling 

Is the system 

easy to 

follow?  

User-driven:  

The training can be easily 

operated by a 'naïve user' 

unaided. 

 

The user only needs to 

perform all the movement 

tasks, and the training will be 

immediately done. 

Experimenter driven:  

The user needs to follow the 

guidance from the 

experimenter. 

 

The user needs to pause and 

wait when the experimenter 

is processing the data. 

The way to 

switch the 

prosthesis 

control mode 

Automatic switch;  

Driven by user's motion 

Manual switch; 

Controlled by experimenter 
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