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Abstract— Accurate motor function assessment of post-stroke
patients plays a critical role in their rehabilitation interventions.
In this paper, we propose an approach to use wearable inertial
sensing technology to quantitatively evaluate the patients’ motor
behavior. Different from existing wearable motor function
assessment techniques that focus on building mapping functions
that correlate sensed movement signals to the standard clinical
rating scales, our approach provides a fine-grained assessment
by capturing detailed patterns contained in the patients’ move-
ments. We collected data on three subjects including two post-
stroke patients who have varying degrees of upper extremity
hemiparesis. Our experimental results validate our approach
and demonstrate that the captured patterns can be used to
complement the standard clinical scores to provide fine-grained
motor function assessment and help clinicians to track patients’
gradual progress during rehabilitation.

I. INTRODUCTION

Stroke is a leading cause of adult disability and death

worldwide today [1]. While post-stroke patients often exhibit

impaired balance, partial or full paralysis, and spasticity

problems [2], many improve their mobility and coordination

through comprehensive physical rehabilitation. Thus, it is

important to assess accurately the patient’s current motor

functionality to design the most appropriate rehabilitation

interventions. Clinicians and physical therapists typically

supervise patients’ movements and assess motor functions

using standard clinical rating scales. However, since this

approach relies on the clinicians’ observational measures, the

assessment accuracy can be influenced heavily by clinicians’

subjective judgments. In addition, the rapid growth of the

post-stroke patient population overburdens the clinicians

such that they have little time to complete required assess-

ment and treatment protocols.

Therefore, a tool that can quantitatively evaluate the pa-

tients’ motor function would be valuable for both clinicians

and patients. One popular technique uses video cameras

and special markers attached to patients’ bodies to cap-

ture and assess their movements [3]. Although this optical-

based sensing technology tracks the movement accurately,

it is typically expensive and complicated to set up. More

importantly, optical sensors do not sense the strength of

the patients’ movement, which is an important metric for
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motor function assessment. Alternatively, wearable inertial

sensing technology uses accelerometers and gyroscopes to

directly measure the movement’s acceleration and rotation.

Compared to optical devices, inertial sensors are cheap, tiny,

and can be worn on the body to track movement contin-

uously and unobtrusively [4]. In addition, occlusion, noisy

background, and viewpoint change problems of optical-based

sensing technology are not a factor.

The use of wearable sensing technology for assessment

of motor function has grown significantly in recent years.

Hester et al. [5] used accelerometers and linear regression

models based on their measurements to predict functional

ability scores for stroke rehabilitation. Patel et al. [6] used

clustering techniques to correlate accelerometer signals with

the severity of dyskinesia in patients with Parkinson’s dis-

ease. They demonstrated that patients with different sever-

ities can be represented by well separated clusters. Other

studies cast the motor function assessment as a classification

problem. For example, the authors in [7] used accelerometer,

gyroscope, and magnetometer data to sense patient upper

limb movements after neurological injury. A decision tree

classifier inferred the functional ability score of the Wolf

Motor Function Test (WMFT). Similarly, the authors in [8]

apply the support vector machine (SVM) as the classifier

to learn the mapping function between the functional ability

scores and the severity of Parkinsonian motor fluctuations.

Previous techniques use linear regression, clustering, and

classification to building mapping functions that correlate

sensor signals with standard clinical rating scales. We feel

that the clinical rating scales cannot record all details of

motor behavior, thus failing to evaluate precisely the patients’

performance during rehabilitation interventions. To bridge

this gap, we describe a fine-grained motor function assess-

ment approach that captures detailed patterns of the patients’

motor behavior which standard clinical scores fail to acquire.

We do not regard our approach as a replacement to the

existing clinical score system. Instead, our approach should

act as a significant complement to the standard clinical rating

scales in the sense that combining the scores and the detailed

patterns detected by our approach could produce a more

accurate assessment of patients’ motor behavior.

II. OUR METHOD

Different from the existing motor function assessment

methods in which the whole segment of the motor task

is mapped to a single point in the feature space, the first

step of our fine-grained approach is to divide the streaming

sensor data sampled from each motor task segment into a

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

6111978-1-4577-1787-1/12/$26.00 ©2012 IEEE



sequence of fixed-length tiny windows whose length is much

smaller than the duration of the motor task itself (In this

study, the duration of motor task ranges from 2 seconds

to 10 seconds. The length of the tiny window we use is

0.2 second). Then we extract a number of features which

capture the intrinsic characteristics of the motor behavior

from each tiny window and stack them together to form

a local feature vector. As a consequence, each motor task

segment is transformed into a sequence of local feature

vectors which forms a motion trajectory in the feature

space. Compared to the “single-point” representation used

in the existing methods, this trajectory-based representation

provides more information about the patients’ motor behavior

in the sense that it captures the local details of the motor

tasks in a fine-grained manner. Moreover, we have developed

a trajectory comparison algorithm on top of the fine-grained

representation, which helps clinicians to quantitatively keep

track of the patients’ progress during rehabilitation. In the

remainder of this section, we explain the features we extract

and the details of the trajectory comparison algorithm.

A. Feature Extraction

The raw signals sampled from wearable inertial sensors

are not only noisy but also difficult for clinicians who have

little engineering background to understand and interpret.

Therefore, we need to extract features which contain useful

information about the patients’ motor behavior and more

importantly, are meaningful and interpretable to clinicians.

Below is the list of features we use in this study. These

features are selected since they have clear meanings related

to the physical movements and have been demonstrated to

be able to represent the important characteristics of the

movements in existing studies [9] [6].

• Mean Value of Movement Intensity (MI): Motion

Intensity (MI) is defined as

MI(t) =

√

ax (t)
2
+ ay (t)

2
+ az (t)

2
, (1)

the Euclidean norm of the total acceleration vector,

where ax (t), ay (t), and az (t) represent the tth ac-

celeration sample of the x, y, and z axis in each

window respectively. The value of MI(t) can be seen

as an indirect measure of the instantaneous intensity

(strength) of the performed movement at sample t. We

calculate the mean value of MI within the window and

use it as one of our features.

• Movement Intensity Variation (VI): VI is computed as

the variation of MI defined above. It is intended to mea-

sure the strength variation (range) of the movements.

• Smoothness of Movement Intensity (SI): SI is com-

puted as the derivative values of MI. It is used in our

study to measure the smoothness of the movements.

• Averaged Acceleration Energy (AAE): AAE calcu-

lates the mean value of energy as the sum of the squared

discrete FFT component magnitudes of the sensor sig-

nals over three accelerometer axes. It measures the total

movement acceleration energy.

• Averaged Rotation Energy (ARE): ARE calculates

the mean value of energy over three gyroscope axes.

It measures the total movement rotation energy.

• Time Taken to Complete the Task (TIME): The time

duration is also used as a metric to indirectly measure

the degree of difficulty in completing the movement.

B. Trajectory Comparison

The constructed motion trajectory is expected to capture

the intrinsic characteristics of the patients’ motor behavior.

Although clinicians can find critical patterns and compare

pattern differences between trajectories to track patients’

progress by just visual observation, it is helpful to compare

the trajectories and measure the differences in a quantitative

and objective manner. However, one of the biggest challenges

for the comparison is that trajectories from any two motor

task segments may have different lengths. In this work, we

develop a trajectory comparison algorithm based on dynamic

time warping (DTW) technique to resolve this issue. DTW

is a nonlinear alignment technique for measuring similar-

ity/difference between two signals (normally time series)

which may have different lengths or durations [10]. One

classical application of DTW is to accommodate different

speaking speeds in the domain of automatic speech recogni-

tion. For our case, DTW is used to cope with different move-

ment speeds when patients perform motor tasks. Specifically,

let X and Y denote two trajectories constructed from two

motor task segments of length M and N respectively:

X = x1,x2, . . . ,xi, . . . ,xM (2)

Y = y1,y2, . . . ,yj , . . . ,yN (3)

where xi and yj represent the ith and jth local feature

vector in X and Y respectively. DTW compensates for the

length differences and finds the optimal alignment between

X and Y by solving the following dynamic programming

(DP) problem:

D(i, j) =min {D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)}

+ d(i, j)
(4)

where d(i, j) represents the distance function which mea-

sures the local difference between local feature vector xi and

yj in the feature space, and D(i, j) represents the cumulative

(global) distance between sub-trajectory {x1,x2, . . . ,xi}
and {y1,y2, . . . ,yj}. The solution of this DP problem is

the cumulative distance between the two trajectories X and

Y which sits in D(M,N) and a warp path W of length K

W = w1, w2, . . . , wk, . . . , wK (5)

which traces the mapping between X and Y . Finally, since

the cumulative distance D(M,N) is dependent on the length

of the warp path W , we normalize D(M,N) by dividing it

by the warp path length K and use this averaged cumulative

distance as the metric to measure the distance between

trajectories X and Y as

Dist(X,Y ) =
D(M,N)

K
(6)
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It should be noted that many forms of distance function

d(i, j) (e.g. Euclidean distance and Mahalanobis distance)

can be used to calculate the local difference. In this work,

we use the cosine distance as the local distance function

defined as

d(i, j) = 1−
xi

T · yj

‖xi‖ · ‖yj‖
(7)

Compared to other distance functions, the benefit of using the

cosine distance is that d(i, j) is by nature in the range [0, 1].
As a result, the averaged cumulative distance Dist(X,Y )
defined in Eq.(6) is also in the range [0, 1], and thus can be

interpreted as the dissimilarity between X and Y in terms of

percentile. Therefore, we can also define the corresponding

similarity in percentile between X and Y as:

Sim(X,Y ) = 1−Dist(X,Y ) (8)

III. EVALUATION

A. Experimental Setup

To evaluate the effectiveness of our approach, three sub-

jects including one healthy subject (female) and two subjects

(one male and one female) with different levels of upper

limb hemiparesis from stroke were recruited at the Precision

Rehabilitation Clinic1 and Rancho Los Amigos National Re-

habilitation Center2 located in Los Angeles. The wearable in-

ertial sensor we use for this study is called MotionNode3(see

Figure 1(a)). MotionNode is a high-performance inertial

measurement unit (IMU) that can sense ±6g acceleration

and ±500dps rotation rate. This is high enough to capture

all the details of the patients’ movements. In addition, the

size of MotionNode is extremely small such that it can be

attached to the patient’s body nonintrusively.

During data collection, one MotionNode was attached

to the forearm of the subjects (see Figure 1(b)). Each

subject followed the instructions from a physical therapist

and performed a subset of five upper limb motor tasks from

the Fugl-Meyer Assessment (FMA). We choose FMA since

it is well-known for its comprehensiveness as a measure of

motor impairment after stroke and it is widely recommended

for motor rehabilitation for post-stroke patients [11]. These

(a) MotionNode sensor (b) The placement of MotionNode on the
upper limb of the subject

Fig. 1. Wearable sensor and experimental setup

1http://www.precisionrehabilitation.com
2http://www.rancho.org/
3http://www.motionnode.com/

five motor tasks include: (1) Flexor Synergy; (2) Hand to

Lumbar Spine; (3) Shoulder Flexion; (4) Pronation; and

(5) Supination (See Table I for detailed explanations). Each

motor task was repeated five times by each subject for both

affected and unaffected limbs and was assigned a functional

ability score based on the FMA scale (0 = can not perform,

1 = performs partially, 2 = performs fully) by the therapist.

Motor Task Description

Flexor Synergy Fully supinate the forearm, flex the elbow, and
bring the hand to the ear of the affected side

Hand to Lumbar Spine Move the hand behind the back

Shoulder Flexion Flex the shoulder to 90◦, keeping the elbow
extended

Pronation Flex the elbow to 90◦ and pronate the forearm
through the full available range of motion

Supination Flex the elbow to 90◦ and supinate the forearm
through the full available range of motion

TABLE I

MOTOR TASKS CONSIDERED IN OUR STUDY

B. Experimental Results

1) Fine-Grained Trajectory-based Representation: In or-

der to demonstrate better the benefits of our fine-grained

trajectory-based approach, we first implemented the tradi-

tional motor function assessment method where each motor

task segment is represented as a single point in a high

dimensional feature space. Figure 2(a) and Figure 2(b) show

the scatter plots in the 3D feature space for motor task

Pronation and Flexor Synergy respectively. The three features

used for the plots are AI, VI, and ARE. Here subject 1

is the female patient with upper limb hemiparesis, subject

2 is the healthy female, and subject 3 is the male patient

with upper limb hemiparesis. As shown in Figure 2(a), data

from different subjects and limbs forms compact clusters.

Each cluster is well separated from others except one case

where the data from the unaffected limbs of subject 1 and

subject 2 overlaps. This observation can be explained by

the fact that subject 1 and subject 2 are both female and

the motor tasks are all performed by their unaffected limbs.

For Figure 2(b), data is aggregated as compact clusters as

previous example. However, the cluster formed by the data

from subject 1’s affected limb is very close in distance to

the other two clusters formed by the data from subject 1

and subject 2’s unaffected limbs. Although we can learn a

classifier (e.g. nearest neighbor, SVM) to find a boundary

to partition different clusters and then map the clusters to

different clinical rating scores as in many existing research

work, we argue that the distances between the data points in

the feature space does not reflect their true differences.

In comparison, Figure 3 and Figure 4 illustrate our fine-

grained trajectory-based solution in time-feature space to

tackle the problem observed in the traditional method men-

tioned above. As illustrated, our fine-grained approach is

capable of capturing the detailed patterns of the patients’

motor behavior which traditional methods fail to acquire.

As an example, Figure 3(a) and Figure 3(b) show the fine-

grained trajectory representation of one segment of motor

task Pronation in terms of feature AI and ARE respec-

tively. The red curve represents the task performed by the
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(a) Scatter plot of the motor task Pronation in 3D feature space
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(b) Scatter plot of the motor task Flexor Synergy in 3D feature
space

Fig. 2. The 3D scatter plots of the traditional automatic motor function
assessment method. Subject 1 is the female patient with upper limb
hemiparesis, Subject 2 is the healthy female, and Subject 3 is a male patient
with upper limb hemiparesis. The three features used for the plots are AI,
VI, and ARE.

unaffected limb and the blue one for the affected limb. In

Figure 3(a), our approach is able to capture the two troughs

as patterns for the unaffected limb which does not appear

for the affected limb. Similarly, two high peaks are captured

for the unaffected limb in Figure 3(b) which represent the

two key points during the movement of Pronation where

significant rotation energy is exerted. As another example,

Figure 4 shows the trajectories of motor task Flexor Synergy.

In Figure 4(a), the curve of the unaffected limb is smooth

with two peaks and two troughs detected while the curve

of the affected limb shows less motion intensity but more

fluctuations during the movement. This detailed difference

is by no means reflected by the 1 point difference in the

FMA score assigned by the clinician where the segment of

unaffected limb is given 2 points and the segment of affected

limb is given 1 point. Finally, similar conclusion can be

drawn for Figure 4(b) as in Figure 3(b).

2) Trajectory Comparison Performance using DTW:

As shown in the previous subsection, our trajectory-based

approach captures the detailed pattern differences of the

patients’ motor behaviors. Here, we apply the DTW tech-

nique and the dissimilarity/similarity metric defined in

Eq.(6)/Eq.(8) in percentile to quantitatively measure the

differences/similarities between the fine-grained trajectories

of the affected and unaffected limbs. Specifically, we first

use DTW to extract the warp path of the two trajectories

to be compared. Figure 3(c) and Figure 4(c) show two

extracted warp path examples (the red curves overlaid on

the grayscale similarity matrix, where dark entries indicate

less similarity) for motor task Pronation and Flexion Synergy

respectively. Based on the extracted warp paths, we then

compute the similarity metric values in percentile between

each motor task segment performed by the affected limb and

the unaffected limb for each subject and all five motor tasks.

The value of similarity indicates the recovery status of the

affected limb. In other words, the higher the similarity value

is, the better the performance of the affected limb. We also

compare the trajectory similarity between segments from the

same motor task of the unaffected limb. This is useful to

validate whether our similarity metric is robust to noise or

not. The accumulated results are listed in Table II. Since

subject 2 is healthy, we only show the results for subject 1

and subject 3. For each subject, the first row in the table lists

the averaged similarity between segments of affected limb

and unaffected limb with the standard deviation in bracket.

The second row shows the corresponding averaged FMA

scores assigned by the professional physical therapist. The

third row lists the similarity between segments from the same

motor task of the unaffected limb with the corresponding

FMA scores in the forth row.

For all five motor tasks, the trajectory similarity between

segments from the same motor task of the unaffected limb

is very high. This observation indicates that our similarity

metric is robust to noise incurred from the patients’ move-

ments. The more interesting cases lie in the comparison

between unaffected limb segment and affected limb segment.

As shown in the table, their similarity values vary signif-

icantly across different motor tasks. More importantly, the

calculated similarity values show a positive correlation to

the FMA scores assigned by the therapist. For example, the

two highest similarity values of subject 1 come from the

motor task Flexor Synergy (70.55%) and Hand to Lumbar

Spine (72.10%). These two motor tasks also have the highest

FMA scores. Similarly, the motor task which gets the highest

similarity value from subject 3 also has the highest FMA

score. On the other hand, for all the motor tasks which get

FMA score zero, the similarity values range from 33.30% to

49.39%. This indicates that our similarity metric can show

more intermediate levels which would be extremely valuable

for clinicians to track patients’ gradual progress which are

not reflected by the standard clinical scores.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a fine-grained approach that uses

wearable inertial sensors to evaluate the motor function of

the patients with stroke. The experimental results validate

the effectiveness of our approach in capturing the detailed

patterns that standard clinical scores fail to reflect. It should

be noted that our approach is a general technique for fine-

grained motor function assessment that can be used for many

neurological injuries besides stroke. Therefore, based on the

promising results reported in this paper, we plan to apply
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Fig. 3. The fine-grained trajectory representation and the warp path calculated from DTW of Pronation
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Fig. 4. The fine-grained trajectory representation and the warp path calculated from DTW of Flexor Synergy

Flexor Synergy Hand to Lumbar Spine Shoulder Flexion Pronation Supination

Subject 1 Similarity 70.55% (±8.20%) 72.10% (±6.72%) 62.10% (±8.06%) 33.30% (±7.42%) 41.17% (±4.27%)

FMA 1.6 1.6 1 0 0

Similarity 90.18% (±5.29%) 85.17% (±8.71%) 85.53% (±7.46%) 91.27% (±3.32%) 87.65% (±5.06%)

FMA 2 2 2 2 2

Subject 3 Similarity 51.46% (±5.32%) 46.28% (±6.90%) 49.39% (±10.53%) 41.54% (±9.28%) 43.68% (±7.74%)

FMA 0.6 0 0 0 0

Similarity 83.37% (±7.38%) 79.04% (±10.51%) 85.13% (±9.27%) 91.89% (±5.64%) 90.66% (±6.93%)

FMA 2 2 2 2 2

TABLE II

TRAJECTORY COMPARISON RESULTS USING DTW AND THE CORRESPONDING FMA SCORES FOR SUBJECT 1 AND SUBJECT 3

our approach to a larger sample of patients with neurological

injuries such as spinal cord injury in the future.
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