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Abstract— This paper proposes three training strategies
based on impedance control, including passive training,
damping-active training and spring-active training, for a 3-
DOF lower limb rehabilitation robot designed for patients with
paraplegia or hemiplegia. Controllers with similar structure are
developed for these training strategies, consisting of dual closed
loops, the outer impedance control loop and the inner posi-
tion/velocity control loop, known as position-based impedance
control method. Simulation results verify that position-based
impedance control approach is feasible to accomplish the
training strategies.

I. INTRODUCTION

Plenty of common diseases and accidents may lead to

paraplegia or hemiplegia, accordingly, the number of these

patients is growing huge. Compared to traditional physio-

therapy, rehabilitation robot can reduce the cost. Besides, it

can provide various training strategies, broadly classified into

passive training and active training, which both have been

proven effective to rehabilitation by clinic trials [1], [2], [3].

During rehabilitation training, affected limbs are required

direct contact with robot. For the benefit of security, force

control for rehabilitation robot has to be considered. The

most extensively used approach is impedance control.

Y. Yang et al. proposed a position-based impedance control

method for an arm rehabilitation robot to achieve a certain

compliance and security during passive training [4]. E. G.

Cao et al. adopted an impedance control approach for a sit-

to-stand trainer system in lower limb rehabilitation to assure

that patients safely and effectively stood up in their normal

and comfortable posture [5]. An impedance control law was

also employed in [6] to a 3-DOF upper limb rehabilitation

robot in human-robot interactions for its advantages in term

of safety to fulfill two of the rehabilitation modes.

Overall, impedance control used for rehabilitation robot

mainly focus on compliant behavior, and there is little

literature involving elaborate training strategies on the basis

of impedance control. In this study, training strategies using

position-based impedance control for a 3-DOF lower limb

rehabilitation robot designed for patients with paraplegia or

hemiplegia are more elaborately described.
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II. LOWER LIMB REHABILITATION ROBOT

The mechanical structure of the 3-DOF exoskeleton robot

for lower limb rehabilitation is shown in Fig. 1. Three joints

correspond to hip joint, knee joint and ankle joint of a

lower limb. An absolute encoder, a relative encoder and

a torque sensor are installed at each joint to record the

joint angle, angular velocity and torque, respectively. During

rehabilitation training, lower limb is attached to the robot,

and the entire system, robot together with the lower limb

attached, can be considered as a three-link structure. For

simplicity, it is assumed that the mass of the system is evenly

distributed, and the second joint below is treated as a single

link, since the third joint and link have little influence on the

end-point trajectory. Therefore, the simplified model of the

system is a two-link structure shown in Fig. 2.

Fig. 1. Mechanical structure of
rehabilitation robot
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Fig. 2. Simplified structure of system

A. Kinematic Analysis

From Fig. 2, forward kinematics of the system can be

directly deduced as
[

x

y

]

=

[

l1 cos q1 + l2 cos(q1 + q2)
l1 sin q1 + l2 sin(q1 + q2)

]

(1)

where l1, l2 represent the length of link 1 and that of

link 2 respectively, and q1, q2 represent the angle of joint

1 and that of joint 2, and x, y represent the end-point

position in Cartesian space coordinates. Inverse kinematics

can be derived from (1), under the constraint that q2 < 0,

represented as

[

q2
q1

]

=





− arccos
x2

+y2
−l2

1
−l2

2

2l1l2

arcsin y√
x2+y2

− arctan l2 sin q2
l1+l2 cos q2



 . (2)

By differentiating (1), Jacobian matrix can be written as

J=

[

−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]

. (3)

If q2 = 0, det(J) = 0, i.e. rank(J) < 2, making the system in

singular configurations, which should be avoided by setting
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q2 in a reasonable range in training strategies. Therefore, the

inverse velocity kinematics can be expressed as q̇ = J−1Ẋ .

B. Dynamic Analysis

The application of Euler-Lagrange equations leads to ideal

dynamic model of the system, given by the standard form as

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ (4)

where q, q̇, q̈ are the vectors of joint angles, angular

velocities and angular accelerations respectively, D(q) is

the symmetric positive-definite inertia matrix, C(q, q̇)q̇ is

the vector of Coriolis and centrifugal torques, G(q) is

the vector of gravitational torques, and τ is the vector of

actuator joint torques. The matrix Ḋ(q)− 2C(q, q̇) is skew-

symmetric, and the inertia matrix D(q) is bounded [7], [8],

[9]. D(q), C(q, q̇) and G(q) are expressed by (5), (6) and

(7) respectively.






D11 = ( 1
3
m1 +m2)l

2
1 +

1

3
m2l

2
2 +m2l1l2 cos q2

D12 = D21 = 1

3
m2l

2
2 +

1

2
m2l1l2 cos q2

D22 = 1

3
m2l

2
2

(5)















C11 = − 1

2
m2l1l2q̇2 sin q2

C12 = − 1

2
m2l1l2(q̇1 + q̇2) sin q2

C21 = 1

2
m2l1l2q̇1 sin q2

C22 = 0

(6)

{

G1 = ( 1
2
m1+m2)gl1 cos q1+

1

2
m2gl2 cos(q1+q2)

G2 = 1

2
m2gl2 cos(q1 + q2)

(7)

where Dij and Cij denote the (i, j) elements of D(q) and

C(q, q̇) respectively, Gi denotes the i-th element of G(q),
and m1, m2 represent the mass of link 1 and that of link 2

respectively.

Dynamic model which takes friction, disturbance and

human effect into account is rewritten as

D(q)q̈ + C(q, q̇)q̇ +G(q) + T = τ − τh (8)

where T is the vector of joint friction and external distur-

bance torques and τh is the vector of joint torques exerted

on the robot by human.

III. IMPEDANCE CONTROL AND TRAINING STRATEGIES

Three training strategies, referred to as passive training,

damping-active training and spring-active training, are pro-

posed for the lower limb rehabilitation robot. Controllers

with similar architecture are developed for these train-

ing strategies, named position-based impedance control ap-

proach, composed of dual closed loops. The outer impedance

control loop is established for different purposes in different

strategies. The inner position/velocity control loop is accom-

plished by statics-compensation-based PID algorithm with

limited output, and the statics compensation is implemented

by offline trained RBF artificial neural networks.

The position-based impedance control approach is em-

ployed to accomplish the training strategies in this study.

The aim is to establish a desired relationship between the

position and the force, called impedance function, expressed

by the mass-damper-spring model as

Fe = MẌa +BẊa +KXa (9)

where M, B and K are inertia, damping and stiffness

coefficient matrices respectively. Xa, Ẋa and Ẍa are the po-

sition, velocity and acceleration adjustments to the reference

trajectory respectively and Fe is the contact force between

robot and the environment.

A. Passive Training Strategy

Passive training requires no voluntary participation of

patients, in which the robot tracks the predefined end-point

trajectory carrying the affected limbs to take motion exer-

cises. Impedance control aims to achieve active compliant

behavior of the robot.

The controller architecture for passive training is shown

in Fig. 3. L−1 represents inverse kinematics, and J−1

represents inverse of Jacobian matrix. τh is the vector of

the sensed accidental contact torques between the robot and

lower limbs in joint space, which can be converted into

the force in Cartesian space coordinates, F , through the

transposed inverse of Jacobian matrix, J−T .

Since the velocity is changing rather slowly, the inertia

term is omitted in impedance control. The effects of stiffness

and damping terms are taken into account, related to K1

and K2 respectively, which both are diagonal coefficient

matrices. Impedance control presents the position correction,

Xf , and velocity correction, Ẋf , to the reference trajectory

in Cartesian space coordinates as
{

Xf = K−1

1 J−T τh
Ẋf = K−1

2 J−T τh
. (10)

Therefore, the end-point position command, Xc, and velocity

command, Ẋc, can be expressed as follow
{

Xc = Xr +K−1

1 J−T τh
Ẋc = Ẋr +K−1

2 J−T τh
(11)

where Xr and Ẋr represent the reference end-point position

and velocity respectively. The accidental torques generate

end-point position and velocity adjustments to implement

the active compliance of the rehabilitation robot, i.e. some

position precision is given up to ensure the security and

comfort for patients during training.
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Fig. 3. Controller architecture for passive training

6033



B. Damping-active Training Strategy

In damping-active training, voluntary participation of pa-

tients is required, and angular velocities of the robot joints

are proportional to active joint torques, and impedance

control presents the conversion formula.

The controller architecture for damping-active training

is shown in Fig. 4. The outer impedance control loop is

degraded into damping control, and the inner loop is a

velocity controller. τh is the vector of the sensed active

torques of hip joint and knee joint. B is a diagonal matrix

of damping coefficients in impedance control. The given

angular velocities of two joints are set to be zeros, q̇r =
[0 0]T , so the joint angular velocity commands, q̇c, equal

to the angular velocity adjustments, q̇f , proportional to the

feedback active torques in joint space as

q̇c = q̇f = B−1τh (12)

which shows that more active joint torques are required to

achieve higher angular velocities. The damping coefficients

can be changed for different training resistances. The larger

damping coefficients are, the more active torque contribu-

tions are needed to reach the same angular velocities.
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Fig. 4. Controller architecture for damping-active training

C. Spring-active Training Strategy

Spring-active training also requires voluntary participation

of patients, in which the joint angular displacements are

controlled by active joint torques, and the transformation is

presented by impedance control as well.

The controller architecture for spring-active training is

shown in Fig. 5. The outer impedance control loop is actually

degraded into a stiffness controller, and the inner loop is

position control. τh is the vector of the sensed active torques

in joint space and K is the diagonal matrix of stiffness

coefficients. The joint angular displacements are proportional

to the active joint torques as

qf = K−1τh. (13)

The equilibrium angles of the two joints, qr, are given as

constants, accordingly, the joint angle commands, qc, can be

written as

qc = qr +K−1τh (14)

which shows that larger angular displacements require more

active joint torques, acting as an ideal spring model. Different

training strengths can be achieved by changing the stiffness

coefficients. Larger stiffness coefficients require more active

torque contributions to reach the same angular displacements.
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Fig. 5. Controller architecture for spring-active training

IV. SIMULATION RESULTS AND DISCUSSION

The dynamics of the system shown in (8) is adopted as

the system model in the simulation, with D(q), C(q, q̇) and

G(q) reduced by twenty percent compared to (5), (6) and

(7). The friction and disturbance term is chosen as T =
Kr q̇, where Kr = diag(1.2, 1.2). The following parameters

are used in the simulation, m1 = 15.2kg, m2 = 12.51kg,

l1 = 0.42m, l2 = 0.41m.

A. Passive Straining

Treadmill is employed in the simulation of passive train-

ing, and the desired end-point trajectory of the rehabilitation

robot is predefined as

Xr=

[

0.63 + 0.1 cos(0.5πt)
0.1 sin(0.5πt)

]

which is a circle with the center as (0.63, 0) and radius

as 0.1m. The initial joint angles and angular velocities are

chosen as q0 = [0.8 − 0.5]T and q̇0 = [0 0]T respectively.

Let stiffness and damping related diagonal matrices be K1 =
diag(100, 100) and K2 = diag(100, 100) respectively. The

unexpected contact torques in joint space between the robot

and lower limbs are defined as

τh =







[0 0]
T

0 ≤ t < 6.5
−5q̇ 6.5 ≤ t ≤ 7

[0 0]
T

7 < t ≤ 10

.

Fig. 6 shows the simulation results of passive training in

10s. Trajectories of joints 1 and 2, as well as the end are

shown in Fig. 6 (a), (b) and (c) respectively. During 6.5s ≤
t ≤ 7s, obvious trajectory deviations appear because of the

unexpected contact torques; thus, the compliant behavior is

implemented, and some position precision is sacrificed to

protect lower limbs from excessive interaction force. When

the accidental contact torques vanish, the controller performs

as a position controller.

B. Damping-active Training

In the simulation of damping-active training, the rela-

tionship between the active torques, τh, and angular dis-

placements for the hip and knee joints of a lower limb are

considered as ideal spring models, defined as

τh = Ke(q0 +K−1
e τ0 − q)
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Fig. 6. Simulation results of passive training

where the diagonal matrix of joint stiffness coefficients is

chosen as Ke = diag(5, 5), the initial joint angles are q0 =
[0.4 − 0.4]

T
, and the initial input active torques are τ0 =

[2 − 2]
T

.

The simulation results in 10s for joint 1 with B =
diag(3, 3) and B = diag(5, 5) are shown in Fig. 7. Note that

the unit of torques is different in the figures. It is verified

that joint angular velocities are in proportion to active joint

torques; thus, impedance control approach is feasible for

damping-active training strategy. Compared Fig. 7 (a) with

(b), larger damping coefficients leading to stronger training

exercises has been proven. The simulation results for joint 2

performs similarly.
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Fig. 7. Simulation results of damping-active training

C. Spring-active Training

In the simulation of spring-active training, the constant

equilibrium joint angles are chosen as qr = [0.7 − 1.3]
T

,

the initial joint angular velocities are chosen as q̇0 = [0 0]T ,

and the active joint torques are defined as

τh =



















[0.5 − 0.5]
T

0 ≤ t < 2

[2 − 2]
T

2 ≤ t < 4.5

[−1.5 1.5]
T

4.5 ≤ t < 8

[−1 1]
T

8 ≤ t ≤ 10

.

Fig. 8 shows the simulation results in 10s for joint 1 with

K = diag(5, 5) and K = diag(10, 10). Note that the unit of

torques is different in the figures. Joint angular displacements

proportional to active torques have been implemented, and

the feasibility of impedance control has been proven. Com-

pared Fig. 8 (a) with (b), it is verified that the larger damping

coefficients are, the more active joint torques are required to

reach the same angular displacements. The performance of

simulation results for joint 2 is similar.
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Fig. 8. Simulation results of spring-active training

V. CONCLUSION

Three training strategies for the lower limb rehabilitation

robot applied to patients with paraplegia and hemiplegia have

been accomplished using position-based impedance control.

Better rehabilitation effect could be realized by selecting

appropriate training strategies and impedance parameters

depending on different patients and rehabilitation phases.
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