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Abstract— We develop a new prediction method of res-
piratory motion for accurate dynamic radiotherapy, called
tumor following radiotherapy. The method is based on a time-
variant seasonal autoregressive (TVSAR) model and extended
to further capture time-variant and complex nature of various
respiratory patterns. The extended TVSAR can represent not
only the conventional quasi-periodical nature, but also the
residual components, which cannot be expressed by the quasi-
periodical model. Then, the residuals are adaptively predicted
by using another autoregressive model. The proposed method
was tested on 105 clinical data sets of tumor motion. The
average errors were 1.28 ± 0.87 mm and 1.75 ± 1.13 mm
for 0.5 s and 1.0 s ahead prediction, respectively. The results
demonstrate that the proposed method can outperform the
state-of-the-art prediction methods.

I. INTRODUCTION

In radiotherapy, continuous irradiation only to the target

volume can achieve high therapeutic effects and avoid the

adverse effects, resulting in a favorable outcome [1]. How-

ever, any static positioning to the target, even it is highly

accurate, can be affected badly by intra-fractional internal

organ motions, such as respiratory motion of lung.

Real-time image-guided radiation therapy (IGRT) can

achieve accurate and continuous irradiation to a moving

target and requires at least the following two techniques:

• Real-time measurement of the target tumor motion

• Real-time beam positioning to follow the motion

The techniques have been equipped to most modern radio-

therapy machines, such as kV X-ray fluoroscopic imaging

system for measurement and multi-leaf collimator and/or

moving couch for beam positioning, respectively. However,

in those techniques currently available, there is a delay up

to several hundred milliseconds between motion observation

and beam positioning [2]. The delay of several hundred

milliseconds can naturally distance the center of the target

volume from the isocenter of the irradiation.

In this case, tumor motion prediction can be useful for

compensating the delay and thus several prediction methods
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for tumor motion have been proposed [3]. Nevertheless, any

prediction method sufficient for clinical use has not been

developed yet due to the complex and time-varying nature

involved in respiratory motion.

Periodicity found in respiratory motion is useful to predict

the target motion because it ensures that the past pattern

observed will repeatedly arise at the periods ahead future in

general. A problem here is that the respiratory motion is not

purely periodical, rather quasi-periodical in which intervals

between each respiratory cycles are not constant, but time-

variant. Therefore, the pure periodic model is not sufficient

for accurate prediction of the respiratory motion. To adapt

to the quasi-periodical nature can thus be a main challenge

in the respiratory motion prediction.

A time-variant seasonal autoregressive (TVSAR) model-

based method is one of the state-of-the-art methods for such

complex lung tumor motion prediction [4]. The TVSAR was

developed to express the quasi-periodical nature by adapting

to the fluctuated periodicity and can predict a regular breath-

ing position at most 1 s ahead future within 1 mm accuracy

on average. On the other hand, the TVSAR does not take

into account other variations involved in respiratory motion

such as baseline shift, amplitude change, and so on [5].

In this paper, the TVSAR model-based method is extended

to adapt to such various respiratory motions by using a new

residual component model that is unable to be represented by

the conventional TVSAR model. The method was evaluated

by using several clinical data sets of lung tumor motion.

II. RESPIRATORY MOTION OF LUNG TUMOR

Lung tumor moves with patients’ breathing and the motion

has complex nonlinear and time-varying characteristics. As

an example, Fig. 1 shows a three-dimensional respiratory

motion of lung tumor. The example is taken from a clin-

ical data set obtained at George town University Hospital

by using Cyberknife Synchrony system [5]. The sampling

frequency was 26 Hz approximately.

In general, a lung tumor motion involves a periodical

component because breathing is composed of repetition of

inspiration and expiration. Fig. 2 provides power spectrum

density of the superior-inferior motion shown in the top

of Fig. 1. The dominant frequency corresponding to the

respiratory cycle can be found at 0.30 Hz approximately

in this example. This means that the tumor motion has

a periodical component induced by the 3.3 s respiratory

cycle in average. Recalling that the breathing period is time-

variant, short-time Fourier transform (STFT), instead of the
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Fig. 1. An example of complex lung tumor motion [5] composed of time-
variant periodical motion with amplitude change, base line shift, etc. SI:
superior-inferior axis, LR: left-right axis, and AP: antero-posterior axis.
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Fig. 2. Power spectrum of SI tumor motion shown in Fig. 1. The dominant
frequency of the respiratory cycle is 0.3 Hz approximately.

normal long-time Fourier transform, was performed on the

superior-inferior motion. The time-variation of the frequency

spectrum is shown in Fig. 3. The dominant frequency at each

time is depicted as a black dashed line. The line indicates

that the respiratory cycle fluctuates with time. The range of

the fluctuation was from 0.29 to 0.40 Hz in this example.

III. METHODS

A. Prediction methods

Let {y(t)} = {y(1), y(2), . . . , y(t), . . . , y(T )} be one-

dimensional target time series of length T . Here y(t) is a

coordinate of lung tumor motion at discrete time t.

1) Seasonal autoregressive (SAR) model: Let us first

define the SAR model that is fundamental to the TVSAR

model and its extension proposed in this paper.

The N -th SAR model is given as

y(t) = ǫ(t) +
N

∑

n=1

Φn · y(t − n · s) (1)
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Fig. 3. Time-frequency analysis of SI motion shown in Fig. 1 (top). The
black dashed line depicts the dominant frequency of the respiratory cycle
at each time.

where ǫ(t) ∼ N (0, σ2) is a Gaussian noise, Φn, n =
1, 2, . . . , N are SAR coefficients, and s is the period of

the target time series {y(t)}. Then, the SAR model-based

equation for h-sample ahead prediction can be given by

substituting t + h for t:

ŷ(t + h|t) =

N
∑

n=1

Φ̂n · y(t + h − n · s) (2)

Here ŷ(t+h|t) denotes h-sample ahead prediction of y(t+h)
predicted at time t and Φ̂n is an estimate of Φn.

The general SAR model can predict periodical time series

with a constant period s, but the SAR model does not

take into account the time-variation of the periodical nature

involved in lung tumor motion {y(t)}. This limitation often

affects badly on the prediction accuracy.

2) TVSAR model: To overcome the limitation of the

general SAR model, TVSAR introduced a time-varying and

irregular interval, instead of a constant period s.

The prediction equation of the N -th TVSAR is given as

ŷ(t + h|t) =

N
∑

n=1

Φ̂n · y(t + h − r̂n(t + h|t)). (3)

where rn(t|t) > 0 are called reference intervals for indicat-

ing the past observed values at a corresponding phase, ideally

the same phase, to the current value y(t). r̂n(t+h|t) > 0 are

intervals predicted at time t for indicating the corresponding

phase to the future value y(t + h). For simplicity, the order

and coefficients below are fixed as N = 2 and Φ̂n = 1/N ,

respectively.

The reference intervals rn(t|t) are important for adapting

the model to the fluctuation of the target periodical nature,

but unknown in general. A correlation analysis based method

is then used to estimate such intervals that can indicate the

corresponding values.

The estimation procedure is as follows.

1) At time t, calculate a correlation function of lag k =
0, 1, 2, . . . given by

C(t, k) =
1

w

w−1
∑

j=0

y(t − j) − µt

σt

y(t − k − j) − µt−k

σt−k

(4)

where µt and σt are the sample mean and variance

of a subset time series with length w described as

[y(t − w + 1), y(t − w + 2), . . . , y(t)].
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2) The n-th reference interval is estimated as the lag k
of the n-th local maximum of the correlation function

C(t, k) as

r̂n(t|t) = arg max
k

C(t, k) (5)

where search range is set as rn(t − 1|t − 1) − w/2 <
k < rn(t − 1|t − 1) + w/2 for n.

3) Update the subset length by w = ⌊a · r̂1(t|t) + 0.5⌋.

Here a is a coefficient to adapt the length based on

r̂1(t|t) and was empirically set as 0.5 to use a subset

of an approximate half length of the latest wave.

The initial reference intervals used for the estimation

procedure were given as

r̂n(ts|ts) = n × ŝ. (6)

Here ts > w is a start time for prediction and ŝ is a

period estimated by using the values initially available, i.e.,

{y(t)}, 1 ≤ t ≤ ts. In this study, ŝ was given as the

interval between lag 0 and the first local maximum of the

autocorrelation function of {y(t)}, 1 ≤ t ≤ ts. The zero-

order hold technique was used to predict reference intervals

at h-sample future required in the prediction equation (3).

r̂n(t + h|t) = r̂n(t|t). (7)

3) TVSAR with adaptive residual prediction (Proposed):

The TVSAR model-based method can predict the quasi-

periodical component in tumor motion, but does not take

into account the other components such as the baseline

shift and amplitude change. This is a limitation of the

conventional TVSAR prediction for such tumor motion. To

improve the prediction accuracy, the residual error of the

TVSAR prediction is considered in the proposed method.

The TVSAR prediction can be separated into the predicted

N -quasi periodical components as follows.

ŷn(t + h|t) = y(t + h − r̂n(t + h|t)), n = 1, 2, . . . , N (8)

where ŷn(t+h|t) are prediction values of the quasi-periodical

components.

If the target motion involves the other, not quasi-

periodical, components, there still remains N -seasonal resid-

uals between the actual values y(t + h) and the predicted

quasi components ŷn(t + h|t) at each time t.
The N -seasonal residuals can be written by

zn(t + h|t) =
1

(

∑N

n=1
Φn

)y(t + h) − ŷn(t + h|t). (9)

Note that the residuals for h > 0 are unknown future values,

but the past residuals can be obtained for h ≤ 0 at each

time t. If we can build an appropriate model with sufficient

accuracy for residuals by using the past ones, then it is

expected that the prediction accuracy of the TVSAR method

can be improved by predicting those residuals using the

model.

To predict the residuals, we assumed that each residual can

be expressed by the Mn-th autoregressive model. Therefore,

the residuals are modeled by using the residuals obtained for

h ≥ 0. The residual model is given as

zn(t + h|t) = ǫn(t) +

Mn
∑

m=1

φm,nzn(t + h − m|t) (10)

where φm,n,m = 1, 2, . . . ,Mn are the AR coefficients.

To build the residual models, the coefficients φm,n are

adaptively estimated by using the Burg’s algorithm [6] and

the order Mn is determined based on Akaike information

criterion [7] at each time t. Data length for building the

residual models is given as L = ⌊b · r̂1(t|t) + 0.5⌋.Here b is

a coefficient and was empirically set as 1.5 in this study.

Then, once the order M̂n and the coefficients φ̂m,n are

estimated, the N residuals can be iteratively predicted. The

prediction equation of the residual is as follows.

ẑn(t + h|t) =

M̂n
∑

m=1

φ̂m,nẑn(t + h − m|t). (11)

The residual prediction can improve the accuracy and this is

a core contribution of the proposed method compared to the

conventional TVSAR.

The final form of the proposed prediction equation is given

as follows.

ŷ(t + h|t) =
N

∑

n=1

Φ̂n {ẑn(t + h|t) + ŷn(t + h|t)} (12)

It may be worth to mention that the idea to model the

residual component as an AR process is not new and has

been used in a general SAR model [6], but the residual

modeling in the proposed TVSAR is different from the SAR

model because only one AR model is used in the SAR, while

specific AR models are individually built for corresponding

seasonal components in the proposed model. In this sense,

the proposed TVSAR is more general than the SAR.

4) Other prediction methods for comparison: For predic-

tion benchmark, zero-order hold (ZOH) and first-order hold

(FOH) were tested. Prediction equations of ZOH and FOH

are given as follows.

• ZOH: ŷ(t + h|t) = y(t)
• FOH: ŷ(t + h|t) = y(t) + (y(t) − y(t − 1))h

Note that ZOH corresponds to the case that the delay in the

radiotherapy system is not compensated.

B. Data sets

The lung tumor motion data sets of 105 treatment fractions

for 30 patients were used for the performance evaluation. An

example of the motion has been shown in Fig. 1. More details

of the data sets are described in Suh et al. [5].

C. Prediction performance index

For evaluating the prediction performance, we have

adopted the root mean square error (RMSE) given as

RMSE(h) =

√

√

√

√

1

T

T
∑

t=1

e(t + h|t)2 (13)

6030



2.392 2.3925 2.393 2.3935 2.394 2.3945 2.395

x 10
4

-2

0

2

4

6

8

10
T

u
m

o
r 

m
o

tio
n

 (
m

m
)

Time (s)

�

�

Actual

Proposed

TVSAR

Fig. 4. An prediction example of tumor motion for 7 samples forward
future (approximately 0.27 s ahead).
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105 data sets at prediction horizon 0.5 s.

Here e(t + h|t) is the Euclidean distance between the three-

dimensional actual and predicted values.

IV. EXPERIMENTAL RESULTS

Fig. 4 shows an example of 7 samples (approximately

0.27 s) forward predictions by the proposed and conventional

TVSARs. As is clear from this figure, the proposed method

can trace the actual values accurately. On the other hand,

due to the lack of the other components except for quasi-

periodical one, the conventional prediction is not fitted to

the actuals at the regions involving a trend and/or ampli-

tude variation. The example suggests an advantage of the

proposed residual prediction as expected.

Fig. 5 shows RMSEs normalized by RMSE values of ZOH

for 105 data sets at 13 samples (0.5 s) ahead. According to

this figure, normalized RMSEs of the proposed method are

almost less than 1 and other normalized RMSEs. Thus the

proposed method is superior to the other methods and the

superiority is robust to data variation.

Fig. 6 shows the RMSE, averaged over all the 105 data

sets, as a function of prediction horizon. As is clear from the

figure, the least averaged RMSE is achieved by the proposed

method for all the prediction horizons tested. The RMSEs of

the proposed method for 0.5 s and 1.0 s ahead predictions

were 1.28±0.87 mm and 1.75±1.13 mm, respectively. Only

the proposed method achieved the RMSE less than 2 mm.

On the other hand, TVSAR showed RMSE of 2.13±1.49
mm for 0.5 s prediction horizon. This is larger than RMSE

of ZOH at the same horizon. The TVSAR prediction is thus

not suitable for this data sets at least for short prediction

horizons. The difference between the performances of the

proposed and conventional TVSARs indicates that the pro-

posed method is superior to the conventional one. Also, the
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Fig. 6. The average of root mean squared error (RMSE) as a function of
prediction horizon for 105 data sets.

higher performance for many clinical data suggests that the

proposed method can be used to predict a wide variety of

respiratory motions.

V. CONCLUSIONS

In this paper, a new TVSAR model with adaptive residual

prediction was proposed for respiratory tumor motion predic-

tion. The performance evaluation using 105 clinical data sets

has demonstrated that the proposed method can achieve the

best prediction accuracy among the methods tested, including

the conventional TVSAR. Since the conventional TVSAR

had shown the state-of-the-art performance for several clini-

cal data sets, we may thus conclude that the proposed method

can be superior to the state-of-the-art prediction and help the

continuous and accurate irradiation to the moving tumor.
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