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Abstract— In recent years, many image analysis algorithms
have been presented to assist Diabetic Retinopathy (DR) screen-
ing. The goal was usually to detect healthy examination records
automatically, in order to reduce the number of records that
should be analyzed by retinal experts. In this paper, a novel
application is presented: these algorithms are used to 1) discover
image characteristics that sometimes cause an expert to disagree
with his/her peers and 2) warn the expert whenever these
characteristics are detected in an examination record. In a DR
screening program, each examination record is only analyzed
by one expert, therefore analyzing disagreements among experts
is challenging. A statistical framework, based on Parzen-
windowing and the Patrick-Fischer distance, is presented to
solve this problem. Disagreements among eleven experts from
the Ophdiat screening program were analyzed, using an archive
of 25,702 examination records.

I. INTRODUCTION
Diabetic Retinopathy (DR) is the leading cause of blind-

ness in the working population of the European Union and
the United States [1]. Because early detection and timely
treatment of DR can prevent visual loss and blindness in
patients with diabetes, several DR screening programs have
been initiated in recent years [2], [3], [4]. As a consequence,
large archives of DR examination records, each containing
several eye fundus photographs, are available. In this paper,
these image archives are used to study disagreements among
retinal experts. If we can detect image characteristics that
cause an expert to disagree with his/her peers, then a warning
can be raised whenever these characteristics are found in an
examination record. This personalized decision support tool
does not imply an additional workload for retinal experts.

In order to discover these characteristics, we propose to
project all stored examination records into a common image
analysis space. Many image analysis algorithms have been
presented in recent years to detect the early signs of DR
[5], [6] of to assess image quality [7], [8]. We propose
to associate each dimension in image analysis space with
one of these algorithms. Then, using all examination records
analyzed by one expert, as well as the decisions he/she made
for each record, the decisions of this expert can be modeled
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at each location in image analysis space. Note that, in a
DR screening program, the main decision experts have to
make is whether or not a patient should be referred to an
ophthalmologist for further examinations, treatment, etc. So
we focused on these decisions. Finally, once a decision model
is available for each expert, disagreements among experts can
be studied through a comparative analysis of their decision
models.

II. IMAGE ANALYSIS SPACE

In this section, we present how a d-dimensional image
analysis space A was designed (d = 6). The first two
dimensions were associated with standard lesion detection
algorithms (§II-B), the third dimension was associated with
a weakly-supervised anomaly detector (§II-C) and the last
three dimensions were associated with image quality metrics
(§II-D).

A. Training set

A training set of examination records was used to design
the image analysis space: T = {Ri, i = 1..N}. Each exami-
nation record Ri ∈ T was associated with a binary decision
δi ∈ {’non-referable patient’, ’referable patient’} assigned
by one retinal expert.

B. Lesion Detection Dimensions

The first two dimensions of A, namely a1 and a2, were as-
sociated with lesion detection algorithms: a1 was associated
with a microaneurysm detector D1 [9], a2 was associated
with an exudate detector D2 [6].

For each lesion detector Dk, k ∈ {1, 2}, a set of lk,i
lesion candidates was detected in each examination record
Ri ∈ T : Lk,i = {(Ij , xj , yj , sj , pj), j = 1..lk,i}. Lesion
candidate (Ij , xj , yj , sj , pj) is a connected component of sj
pixels detected in image Ij ∈ Ri, at location (xj , yj), with
probability pj .

To define the kth dimension of A, each set Lk,i was
converted into a single number, ak,i ∈ R, as explained below:

1) Fk, the joint Cumulated Distribution Function (CDF)
of all (sj , pj) tuples in the training set (j =
1..lk,i, Ri ∈ T ) was estimated,

2) for each examination record Ri ∈ T , Hk,i, a b-bin
histogram of {Fk(sj , pj), j = 1..lk,i} was built (b ∈
N∗),

3) for each examination record Ri ∈ T , each bin in Hk,i

was divided by |Ri|, the number of images in Ri,
4) a linear discriminant analysis [10] was performed in Rb

to best separate referable patients from non-referable
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patients (according to the δi decisions) ; let wk denote
the normal to the discriminant hyperplane,

5) for each examination record Ri ∈ T , ak,i was obtained
by projecting Hk,i onto wk:

ak,i = wk ·Hk,i, k ∈ {1, 2} (1)

C. Anomaly Detection Dimension

The following dimension of A, namely a3, was associ-
ated with a weakly-supervised anomaly detector D3 [11].
Unlike the above microaneurysm and exudate detectors, D3

computes a3,i directly from an examination record Ri ∈ T ,
without segmentation steps.

Given annotated examination records (Ri, δi) ∈ T ×
{’non-referable patient’, ’referable patient’}, D3 was trained
to detect patterns of arbitrary size that only appear in images
I ∈ Ri such that δi =’referable patient’. D3 was trained as
follows:

1) each image I in the training set (I ∈ Ri, Ri ∈ T ) was
divided into sub-images J ⊂ I of various sizes,

2) each sub-image was characterized with texture, color
and shape features [12], [13],

3) the n nearest neighbors of each sub-image J ⊂ I were
searched in T \ I (n ∈ N∗),

4) using the percentage of nearest neighbors coming from
patient records Rj such that δj =’referable patient’, an
local anomaly index α(J) was computed for J ,

5) the distance measure between sub-image characteriza-
tions was updated in order to reduce false alarms [11],

6) steps 3) to 5) were repeated until convergence,
7) for each examination record Ri ∈ T , a3,i was com-

puted using all local anomaly indices computed for
sub-images of Ri (see step 4) ):

a3,i =

√
1

|Ri|
∑

I∈Ri,J⊂I
|α(J)|2 (2)

Note that anomalies detected by D3 are typically larger
than isolated microaneurysms or exudates. They include ex-
udate clusters, large hemorrhages, intraretinal microvascular
abnormalities, nevi, etc.

D. Image Quality Dimensions

The last dimensions of A, namely a4, a5 and a6, were
associated with three image quality metrics based on math-
ematical morphology [14]:
• Q4(I) = the average intensity in the morphological

gradient of I (note that gradient images are often used
by autofocus optical systems),

• Q5(I) = the average intensity in the residual image
obtained after alternate sequential filtering of I (this
image contains all dark patterns of I , including blood
vessels),

• Q6(I) = the average intensity in the same residual im-
age, after removing blood vessels through mathematical
morphology.

Low Qk(I) values, k ∈ {4, 5, 6}, are supposedly associ-
ated with low quality images. Therefore, ak,i, the projection

of an examination record Ri onto ak, was defined as the
minimal Qk(I) value in Ri:

ak,i = min
I∈Ri

Qk(I), k ∈ {4, 5, 6} (3)

E. Test set

A, the d-dimensional image analysis space, was designed
using a training set T of examination records (§II-B, II-C).
Before proceeding to the next step, each examination record
in a test set T was also projected into A.

III. DISAGREEMENT MAPS IN IMAGE ANALYSIS
SPACE

In this section, we describe how a disagreement map was
built for each retinal expert in image analysis space A = Rd

(§III-C). In that purpose, we first modeled the decisions of
each expert individually, as well as the decisions of the group
as a whole, through the design of decision maps (§III-B).

Let M denote the number of retinal experts. Let Xe

denote one expert, e = 1..M . To model the decisions
of each expert individually, the test set T was partitioned
into 2M sets of examination records: X−e and X+

e , e =
1..M . Subset X−e (respectively X+

e ) contains all examination
records Ri ∈ T analyzed by expert Xe such that δi =’non-
referable patient’ (respectively δi =’referable patient’). To
model the decisions of the group as a whole, the test set
T was also partitioned into 2 sets of examination records:
X− = {Ri ∈ T : δi =’non-referable patient’} and X+ =
{Ri ∈ T : δi =’referable patient’}.

To build a decision map for expert Xe, we estimated
f−e and f+e , the Probability Density Function (PDF) of the
d-dimensional distributions from which X−e and X+

e were
drawn, respectively. Assuming each subset is an independent
and identically distributed sample, the associated PDF was
estimated using the Parzen-window method [15]. Similarly,
PDFs f− and f+ were estimated from subsets X− and X+,
respectively.

A. Parzen-Window Density Estimation

Parzen-windowing is a non-parametric PDF estimation
method. Originally defined for one-dimensional data, it was
extended to any d-dimensional space by Murthy [16]. In the
Parzen-window method, the estimate PDF f̂ of a subset X
is given by the following formula:

f̂ : A → R

x 7→ f̂(x) =
1

|X |
∑
x′∈X

1

h(|X |)d
K

(
x− x′

h(|X |)

)
(4)

where K is a weighting function (or kernel function) and
h is a positive valued function of |X | that tends to 0 as
|X | increases. The following functions were used for K
and h: the Gaussian kernel and the Koontz’s function [17],
respectively; these choices are standard. A one-dimensional
illustration is given in figure 1.
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Fig. 1: 1-D Parzen-windowing: the estimate PDF is the
average of the |X | = 3 data-centered windows (h(|X |) = 1).

B. Decision maps

Then, a decision map Φe : A→ R2 was defined for expert
Xe as follows:

Φe(x) = (Φ−e (x),Φ+
e (x))

Φ−e (x) = |X−e |f̂−e (x)

Φ+
e (x) = |X+

e |f̂+e (x)

(5)

where f̂−e and f̂+e are the estimate PDFs obtained through
Parzen-windowing (§III-A). Similarly, a collective decision
map Φ: A→ R2 was defined for the group:

Φ(x) = (Φ−(x),Φ+(x))

Φ−(x) = |X−|f̂−(x)

Φ+(x) = |X+|f̂+(x)

(6)

C. Disagreement Maps

Then, a disagreement map ∆e : A → R was defined for
expert Xe as follows:

∆e(x) =
Φ+

e (x)

Φ−e (x) + Φ+
e (x)

− Φ+(x)

Φ−(x) + Φ+(x)
(7)

A positive (respectively negative) ∆e(x) value indicates that
expert Xe is overly sensitive (respectively specific) in the
neighborhood of x ∈ A.

D. Visualizing Decision and Disagreement Maps

Let us remind that A is a 6-dimensional space (d = 6 -
§II). Therefore, dimension reduction, from A = Rd to R2,
is necessary for visualization purposes. We propose to find
the 2-dimensional linear subspace of A, defined by a linear
transformation L ∈M(6, 2), where the two binary decisions
δ =’non-referable patient’ and δ =’referable patient’ are
most separated.

Let X− = {Ri ∈ T : δi =’non-referable patient’}
and X+ = {Ri ∈ T : δi =’referable patient’} denote
a partition of the training set with respect to the binary
decisions. The optimal linear transformation L is obtained
by maximizing the Patrick-Fischer distance [18] between

f̂− and f̂+, the estimate PDF of the marginal distributions
from which LT · X− and LT · X+ were drawn, respectively.
To facilitate the interpretation of L, each dimension of A
was normalized (average=0, standard deviation=1) before
maximizing the Patrick-Fischer distance.

IV. OPHDIAT ARCHIVE

A digital archive containing all examination records col-
lected in the Ophdiat screening network1 during two con-
secutive years (2008 and 2009) was used in this paper.
Ophdiat consists of 29 DR screening centers in the Parisian
area. 25,702 examination records were collected by trained
technical staff and submitted to a remote server. Then, each
examination record was analyzed by one retinal expert, out
of 11 participating experts, in Lariboisière Hospital (Paris,
France).

Besides demographic and biological data, each examina-
tion record contains two eye fundus photographs per eye
on average: one centered on the fovea and one centered
on the optic disk. Images were obtained with non-mydriatic
retinographs: either CR-DGi (Canon, Tokyo) or TRC-NW6S
(Topcon, Tokyo) retinographs. Depending on the settings of
each retinograph, images with varying sizes were obtained:
image sizes ranged from 1440 × 960 to 2544 × 1696 pixels.
To ease the task of the image analysis algorithms, all images
were automatically resized and cropped to a definition of
780 × 780 pixels (see Fig. 3). Overall, 107,799 images were
collected.

In each record, one expert indicated whether or not the
patient should be referred to an ophthalmologist for further
examinations, treatment, etc. Normally, patients are referred
to an ophthalmologist when they have DR, or another pathol-
ogy, in at least one eye (one exception: mild nonproliferative
DR does not trigger a referral). Referral was decided for
6,391 records (prevalence: 25%).

This archive was partitioned into a training subset T and
a testing subset T at random: |T | = |T | = 12, 851 records.

V. RESULTS

The following parameters were used to build the image
analysis space: b = 8 bins (§II-B), n = 5 neighbors (§II-C).
The following linear transformation L was found optimal:

LT = 10−2
(
−4.79 1.18 1.01 11.4 −74.3 65.7
96.6 1.51 −25.0 1.86 −6.10 0.173

)
(8)

The first dimension in the reduced image analysis space
(first row in LT ) is mostly related to image quality: the
most important input dimension is a5 (alternate sequen-
tial filtering). The second dimension is mostly related to
pathology detection: the most important input dimension
is a1 (microaneurism detection). Fig. 2 displays the deci-
sion and disagreement maps of two retinal experts (out of
eleven) in this space. One can see, in Fig. (a) and (c),
that the second dimension (in columns) clearly is more
correlated with the decisions assigned by experts to each

1http://reseau-ophdiat.aphp.fr
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(a) decision map of expert 1 (b) disagreement map of expert 1

(c) decision map of expert 2 (d) disagreement map of expert 2

Fig. 2: Decision and Disagreement maps. In decision maps,
the first component (associated with ’non-referable patient’
decisions) is in the green channel and the second component
(associated with ’referable patient’ decisions) is in the red
channel. In disagreement maps, negative values (indicating
that the expert is overly specific) are in green and positive
values (indicating that he/she is overly sensitive) are in red.

Fig. 3: Example of image where expert 2 is overly specific.

examination record. However, it can be seen, in Fig. (b) and
(d), that the first dimension (in rows) has an influence on
the disagreements among experts: image quality influences
disagreements among experts. The white circle in Fig. 2
indicates a region in image analysis space where expert 2 is
overly specific: it corresponds to low quality images where
no abnormalities are visible (see Fig. 3).

VI. CONCLUSION

In this paper, some disagreements among retinal experts
were discovered in a feature space generated by existing
image analysis algorithms. Even though each examination
record was only seen by one expert, the use of Parzen-

windowing (see Fig. 1) in this space allowed us to compare
the decisions of several experts. In order to study the
disagreements among retinal experts further in future works,
demographic information (age, duration of diabetes, etc.),
as well as other retinal image analysis algorithms (vessel
tortuosity assessment, cup-to-disk ratio assessment, etc.), will
be included.
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