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Abstract— In this paper, we present an adaptive weighting
approach to microaneurysm detector ensembles. The basis of
the adaptive weighting approach is the spatial location and
contrast of the detected microaneurysm. During training, the
performance of ensemble members is measured with a respect
to these contextual information, which serves as a basis for
the optimal weights assigned to detectors. We have tested this
approach on two publicly available datasets, where it showed
its competitiveness compared with out previously published
ensemble-based approach for microaneurysm detection. More-
over, the proposed approach outperformed all the investigated
individual detectors.

I. INTRODUCTION

Diabetic retinopathy (DR) is a serious eye disease that
originates from diabetes mellitus and is the most common
cause of blindness in the developed countries. Early treat-
ment can prevent patients to become affected from this
condition or at least the progression of DR can be slowed
down. One of the earliest signs of DR are microaneurysms
(MAs). Thus it is essential to recognize this lesion in the
fundus of the eye in time. Computer-aided MA detection is
based on the detailed analysis of digital fundus images (see
Figure 1 for an example). MAs appear as small circular dark
spots on the surface of the retina.

In [1], we introduced 〈preprocessing method, candidate
extractor〉 ensembles for MA detection, which are effective
tools for increasing the sensitivity of microaneurysm de-
tectors by fusing the detections of the candidate extractors
applied after different preprocessing methods. In [2], we
introduced a selection technique for 〈preprocessing method,
candidate extractor〉 ensembles, which resulted in the first
ranked microaneurysm detector in the Reintopathy Online
Challenge [3].

In this paper, we present an adaptive weighting approach
for 〈preprocessing method, candidate extractor〉 ensembles.
This approach assigns an optimal weight for each member
of the ensemble based on their performance of detecting
MAs having different contrast and spatial locations. The
experimental results show that this method is competitive
with our former ensemble-selection approach [2].
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Fig. 1. An example fundus image from the DiaretDB0 [4] dataset.

The rest of the paper is organized as follows: in section
II, we briefly describe the preprocessing methods involved in
our study, while the MA candidate extractors are presented in
section III. The concept of 〈preprocessing method, candidate
extractor〉 ensembles is described in section IV, as well as the
proposed adaptive weighting approach. Section V is devoted
to the methodology we used in this paper. In section VI, we
discuss our experimental results, while we draw conclusions
in section VII.

II. PREPROCESSING METHODS

In this section, we present the preprocessing methods
which we apply on color fundus images to correct the
imaging errors they suffer from. The selection of these
methods reflects the literature recommendations mentioned
in the introduction.

A. Walter-Klein contrast enhancement [5]

This preprocessing method stretches the contrast of fundus
images with the following gray level transformation:
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where {fmin, . . . , fmax}, {f ′min, . . . , f

′
max} are the inten-

sity levels of the original and the enhanced image, respec-
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tively, µ is the mean value of the original grayscale image
and r ∈ R is a transition parameter.

B. Contrast Limited Adaptive Histogram Equalization [6]

First, an adaptive histogram equalization is applied, where
the intensities having a larger frequencies than a predefined
threshold are clipped. Finally, a bilinear interpolation is
applied to eliminate the boundaries between the regions.

C. Gray-World Normalization [7]

Each pixel on the green channel of the image is trans-
formed in the following way:

f ′ =
f

µ
, (2)

where f ′ and f are the respective new and the original pixel
intensities and µ is the average intensity of the green channel.

D. Intensity adjustment [8]

This preprocessing method enhances the contrast of a
grayscale image by saturating the lowest and highest 1%
of the intensity values.

E. Illumination Equalization [9]

This preprocessing method tackles the problems caused
by the uneven illumination of retinal images. Each pixel
intensity is set according to the following formula:

f ′ = f + µd − µl, (3)

where f, f ′ are the respective original and the new pixel
intensity values, µd is the desired average intensity and µl

is the local average intensity.

F. Vessel Removal and Interpolation [10]

The complete vessel system is removed and the holes are
filled by inpainting [11].

G. Wiener filter [12]

This filter passes low frequency components based on
statistics estimated from a local neighbourhood of each pixel.

H. No preprocessing

We also consider the results of the candidate extractors
obtained for the original images without any preprocessing.

III. MA CANDIDATE EXTRACTION

Candidate extraction is a process which aims to spot
objects in the image showing MA-like characteristics. Indi-
vidual MA detectors follow their own way to extract MA
candidates. In this section, we provide a brief overview
of the candidate extractors involved in our analysis. These
algorithms realize different approaches that were described
in details in the introduction.

A. Walter et al. [13]

Candidate extraction is accomplished by grayscale di-
ameter closing, which aims to find all sufficiently small
dark patterns on the green channel. After that, a double
thresholding is applied.

B. Spencer et al. [14]

The vascular map is extracted by applying twelve mor-
phological top-hat transformations with twelve rotated linear
structuring elements (with a radial resolution 15 ◦). Then, the
vascular map is subtracted from the input image, which is
followed by the application of a Gaussian matched filter. The
resulting image is then binarized with a fixed threshold and
the shapes of the MAs are approximated by region growing.

C. Circular Hough-transformation [15]

Following the idea presented in [15], we established an
approach based on the detection of small circular spots in
the image. Candidates are obtained by detecting circles on
the images using circular Hough transformation [16]. With
this technique, a set of approximately circle-shaped objects
can be extracted from the image.

D. Zhang et al. [17]

In order to extract candidates, this method considers the
maximal correlation coefficient with five Gaussian masks
with different standard deviations for each pixel. Then, it
is thresholded with a fixed threshold value to obtain the
candidates.

E. Lazar et al. [18]

This approach starts with a pixel-wise cross-section profile
alignment with multiple orientations. Then, multi-directional
height map is constructed, which assigns a set of values to
each pixel. These values describe the distinction of the pixel
from its surrounding in a particular direction. After that, MAs
are extracted by thresholding of score values computed from
the directional height map.

IV. THE ADAPTIVE WEIGHTING APPROACH FOR
〈PREPROCESSING METHOD, CANDIDATE EXTRACTOR〉

ENSEMBLES

A 〈preprocessing method, candidate extractor〉 ensemble
is a set S = {〈PPi, CEj〉|i = 1, . . . , M, j = 1, . . . , N}
containing all 〈preprocessing method, candidate extractor〉
pairs, where M is the number of preprocessing methods and
N is the number of candidate extractors, respectively. In this
way, a pair from each preprocessing method and candidate
extractor is formed by generating the output of the candidate
extractor on the training images with the given preprocessing
method applied.

In this paper, we combine the outputs of the 〈preprocessing
method, candidate extractor〉 pairs by weighting. We assign
weights for each candidate with a respect to three different
kind of information: which pair detected the candidate, what
is the contrast in the neighbourhood of the MA and where
it is located on the image.

A. Categorization of MAs based on visibility

To measure the visibility of an MA, we select an e. g.
K ×L = 20× 20 window centered on the MA centroid and
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measure the contrast in this region in the following way:√√√√ 1

MN

M∑
x=1

N∑
y=1

(Ixy − µ)2, (4)

where Ixy is the corresponding intensity of the pixel having
coordinates (x, y) and µ is the average intensity of the
window. The optimal number of K and L can be determined
experimentally.

Since we do not have any prior knowledge about the distri-
bution of MAs based on the contrast information, we aimed
to divide the MAs into three sets with equal cardinalities.
Thus, we categorize an MA as subtle, if its contrast is lower
than the 33th percentile of the observed contrast values in
the training set, obvious, if its contrast is higher than the
66th percentile and regular, otherwise.

B. Categorization of MAs based on spatial location

We also categorized MAs into four more categories based
on their spatial location: near to vessel, in the macula, on
the periphery or other. For the first category, we must detect
the vessel system of the retina. For this task, we used the
method presented in [19]. We consider an MA as near to
vessel, if it is closer to a vessel part than the maximal
MA diameter. For the second category, we detected the
macula with the method proposed in [20]. Then, we classify
the MAs falling into the area of the macula belonging to
the in the macula category. Finally, MAs on the periphery
are determined in the following way: first, the radius of
the retinal ROI is calculated (based on the ROI detection
result using the algorithm proposed in [21]), then, each MAs
having the distance at least the e. g. 90% of the radius
from the center of the retina is considered as peripheral
MA. The aforementioned distance can be adjusted basedon
experiments. MAs do not fit in the above described three
spatial categories are considered in the other category.

C. Weighting

The performance of each 〈preprocessing method, candi-
date extractor〉 pair is measured for each category in the
following way: each extracted candidate is categorized both
by visibility and spatial location, then compared to the
ground truth whether it is an actual MA or not. Based on
this evaluation, for each pair p, visual category v and spatial
category s, we calculate the F-score [22] measure:

fpvs =
2 · senpvs · ppvpvs
senpvs + ppvpvs

, (5)

where
sen =

True MA candidates
All MAs

, (6)

ppv =
True MA candidates
All MA candidates

, (7)

v ∈ {subtle, obvious, regular}, (8)

and

s ∈ {near to vessel, in the macula, on the periphery, other}.

Then, we approximate the optimal weights for
〈preprocessing method, candidate extractor〉 pair p through
the following formula [23]:

wp
vs = log

fpvs
1− fpvs

. (9)

The weights are normalized for each combination of visual
and spatial categories to have a sum of 1.

Finally, for each candidate on an unknown image, the
visual and spatial location categories are determined and
the corresponding weight values are summed as to the
confidence value of the MA candidate. The final confidence
value assigned to an MA candidate is the sum of the weights
of the 〈preprocessing method, candidate extractor〉 pairs,
which detected this candidate. The selected MA candidates
can be selected by thresholding their confidence values.

V. METHODOLOGY

Our first experimental test is performed on the DiaretDB0
database [4]. This database consists of 130 uncompressed
retinal images with 1500 × 1152 pixels resolution and 50◦

field-of-view (FOV). The database is split into a disjoint
training and a test set. There is also manually marked MAs
available for this database as ground truth. The second test is
performed on the Retinopathy Online Challenge (ROC) [3],
which is dedicated to the comparison of MA detectors based
on their performance on 50 JPEG-compressed images differ-
ent FOVs and resolution. There is also a 50 image training set
available for the challenge with similar properties. For each
dataset, the algorithms are compared based on the evaluation
method of the ROC competition [3], which is based on the
sensitivity values at seven false detections per images and
on the average of these results.

VI. RESULTS AND DISCUSSION

The results for the DiaretDB0 and the ROC dataset can
be seen in Tables I and II, respectively. The DRSCREEN
algorithm is a former method of ours, which based on
the selection of 〈preprocessing method, candidate extractor〉
pairs [2]. As it can be seen from the results, the proposed
weighting approach provides better results on the DiaretDB0
dataset, but not on the ROC dataset. The reason for the
alternating performance of the proposed and the DRSCREEN
method may lie in the fact that the fundus image databases
are rather different. However, both ensemble-based approach
outperformed the other individual detectors which shows the
strength of the ensembles in this field.

VII. CONCLUSION

In this paper, we presented an adaptive weighting approach
for ensemble-based microanuerysm detection in color fundus
images. Our approach assign weights for the candidates of
the ensemble members based on their contrast and their
spatial location. Our results showed that this approach is
competitive with selection-based ensemble approaches and
outperforms other individual detectors.
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TABLE I
QUANTITATIVE RESULTS ON THE DIARETDB0 DATASET.

FP/I 1/8 1/4 1/2 1 2 4 8 avg.
DRSCREEN 0.003 0.005 0.011 0.021 0.043 0.087 0.174 0.049

proposed 0.012 0.025 0.037 0.060 0.090 0.129 0.189 0.077

TABLE II
QUANTITATIVE RESULTS OF THE ROC COMPETITION.

FP/I 1/8 1/4 1/2 1 2 4 8 avg.
DRSCREEN 0.173 0.275 0.380 0.444 0.526 0.599 0.643 0.434

proposed 0.172 0.201 0.323 0.426 0.478 0.560 0.638 0.399
Niemeijer et al. 0.243 0.297 0.336 0.397 0.454 0.498 0.542 0.395

LaTIM 0.166 0.230 0.318 0.385 0.434 0.534 0.598 0.381
ISMV 0.217 0.270 0.366 0.407 0.440 0.459 0.468 0.375

OKmedical II 0.175 0.242 0.297 0.370 0.437 0.493 0.569 0.369
OKmedical 0.198 0.265 0.315 0.356 0.394 0.466 0.501 0.357
Lazar et al. 0.169 0.248 0.274 0.367 0.385 0.499 0.542 0.355

GIB 0.190 0.216 0.254 0.300 0.364 0.411 0.519 0.322
Fujita 0.181 0.224 0.259 0.289 0.347 0.402 0.466 0.310
IRIA 0.041 0.160 0.192 0.242 0.321 0.397 0.493 0.264

Waikato 0.055 0.111 0.184 0.213 0.251 0.300 0.329 0.206
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