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Abstract—Diabetic retinopathy is one the most common 

cause of blindness in the world. Exudates are among the early 

signs of this disease, so its proper detection is a very important 

task to prevent consequent effects. In this paper, we propose a 

novel approach for exudate detection. First, we identify 

possible regions containing exudates using grayscale 

morphology. Then, we apply an active contour based method to 

minimize the Chan-Vese energy to extract accurate borders of 

the candidates. To remove those false candidates that have 

sufficient strong borders to pass the active contour method we 

use a regionwise classifier. Hence, we extract several shape 

features for each candidate and let a boosted Naïve Bayes 

classifier eliminate the false candidates. We considered the 

publicly available DiaretDB1 color fundus image set for testing, 

where the proposed method outperformed several state-of-the-

art exudate detectors. 

I. INTRODUCTION 

In the developed countries, diabetic retinopathy (DR) is a 
prevalent reason of vision loss. More than 360 million people 
suffered from diabetes in 2011 and this figure is estimated to 
be 550 million by 2030. That is, the diabetes is a rapidly 
growing disease that affects large portion of the population. 
Thus, an automatic screening of DR has growing importance. 
One of the main tasks of an automatic screening system is to 
detect DR lesions, such as exudates. This lesion appears on 
retinal images as bright patches with various size and 
irregular boundary. In the corresponding literature, a great 
variety of exudate detection algorithms have been proposed. 
Some of them based on grayscale morphology [1-3] and 
others on pixel based classification [4-6]. In this paper, we 
attempt to merge the advantages of these approaches within a 
single framework. As an extension we use a regionwise 
classification instead of the pixel-level one.  

As for the steps of the proposed approach, first we apply a 
morphology-based method for candidate extraction. This step 
emphasizes almost all bright regions in the image. To 
improve sensitivity, we use an active contour method (ACM) 
which determines the correct boundary of the candidates. The 
applied ACM considers sparse field method to minimize the 
well-known Chan-Vese energy function [8]. After the 
determination of the correct boundaries, we extract several 

 
* This work was supported in part by the TECH08-2 project 

DRSCREEN – Developing a computer based image processing system for 

diabetic retinopathy screening of the National Office for Research and 

Technology of Hungary (contract no.: OM-00194/2008, OM-00195/2008, 
OM-00196/2008),   by OTKA/NK101680 - Mathematical modeling of 

clinical observations for improved melanoma detection and by the TÁMOP-

4.2.2/B-10/1-2010-0024 project which is co-financed by the European 
Union and the European Social Fund. 

B. Harangi, I. Lazar, A. Hajdu are with the University of Debrecen, 

Faculty of Informatics, Debrecen, 4010 POB. 12, Hungary (e-mail: 
{harangi.balazs,lazar.istvan,hajdu.andras}@inf.unideb.hu). 

 

 

shape descriptors for all regions in order to classify them as 
true or false exudates candidates. For this task we use Naïve 
Bayes classifier with an adaptive boosting technique to 
enhance its performance. 

The rest of the paper is organized as follows: in section 2, 
we give a short description of the applied image 
preprocessing steps and candidate extraction using 
morphological operators. Section 3 is devoted to determining 
the correct boundaries of the candidates via active contours. 
In section 4, we explain the details of feature extraction and 
the Naïve-Bayes classifier which is optimized by an adaptive 
boosting method. Then, in section 5, we present our 
experimental results and finally some conclusions are drawn 
in section 6. 

II. PREPROCESSING AND CANDIDATE SELECTION 

Exudates appear as bright, yellowish pattern on color 
fundus images. Their shape and size vary in a wide range and 
their boundaries are also quite irregular. These variations in 
their properties cause difficulty in automatic exudate 
detection. 

A. Elimination of the Optic Disc 

The primary problem is the high order similarity in 
appearance between the optic disc (OD) and exudates. Hence, 
the first common task is the elimination of the OD. In our 
former work [9], we proposed an ensemble of algorithms 
based on different principles benefiting from their strength 
and compensating their weaknesses for localization of the 
OD. Based on the combined results of optic disc detectors we 
exclude the OD region from the procedure of exudate 
detection. 

B. Image preprocessing 

The RGB color fundus images have three intensity 
channels: red, green and blue. The green channel ( ) contains 
most of information about lesions and the anatomical parts of 
the retina. Hence, we perform our proposed method on this 
channel. Moreover, to enhance the local contrast of exudates 
we apply contrast-limited adaptive histogram equalization 
(CLAHE) to the green channel (      ). This image 
processing technique can improve the local contrast of the 
image so the edges of the exudates are enhanced. Besides 
CLAHE, we consider another contrast improvement 
technique (         ) which maps the intensity values such 

that 1% of data is saturated at low and high intensities of the 
green channel. 

C. Candidate Extraction 

In this section, we present how we extract the regions 
which possibly contain exudates. These extracted regions will 
be used as initial positions for the active contour 
segmentation method. 
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Walter et al. proposed a morphology based technique [1] 
for the detection of exudates, which has relative high 
precision. In order to localize exudate regions, it considers 
the high local contrast and high intensity values of          . 

Since, there is also high contrast between the vessels and the 
background, the method needs to eliminate the vascular 
system by a simple grayscale morphological closing with 
properly adjusted structure element. On this vessel-free 
image, the local variation is calculated at each pixel within a 
window. To obtain regions of bright objects, an adjusted 
thresholding is applied. To refine the region of a candidate, 
morphological reconstruction is used and the result is 
subtracted from          . The drawback of this method is 

that it finds almost all bright, yellowish patches on the retinal 
image and the boundaries of the detected exudates are not 
precise either. Moreover, in some cases mainly at retinal 
images of young patients, it marks the shine, longish regions 
which spread along the temporal arcade as exudates. For 
these reasons we consider this approach as candidate detector 
and go on with consequent steps for more precise detection. 

III. ACTIVE CONTOUR MODEL 

Our aim besides the recognition of the existence of each 
possible exudate on the retinal image is the proper description 
of their exact shape. We try to retain their correct boundary 
and size to improve the accuracy of our proposed method. 
For this reason, we apply an active contour model which can 
determine the most likely boundary of an extracted candidate. 
The result of the candidate extraction step is a binary image 
and whose boundary is used as an initial position for the 
active contour model as illustrated in Figure 1. 

 

An active contour method can allow the contour to vary 
iteratively so that it can divide the image into separate 

regions. A corresponding regular level set method is 
proposed in [10]. It allows complex boundary behavior, but 
requires heavy computations via the solution of partial 
differential equations. As an alternate solution to reduce the 
processing time significantly, we considered the sparse field 
method (SFM) proposed by Whitaker [11].  

SFM does not require the solution of partial differential 
equations; it works with lists of points corresponding to the 
pixel level sets. In this way, points can be very efficiently 
inserted/removed to/from the proper lists according the 
distance from the zero level set. One limitation of SFM is that 
the segmentation energy function is evaluated only along the 
zero level set, so new curves cannot appear spontaneously.  

In our scenario, the initial zero level set is generated from 
the result of the candidate extraction step. The SFM takes 
each candidate region separately and the initial zero level set 
consists of its boundary pixels. To determine the zero level 
set to the next iteration, the SFM minimizes the well-known 
Chan-Vese energy function (1). The advantage of this energy 
function is that it is capable to segment an exudate that has 
smoother boundaries. The evaluation of the curve depends 
only on the difference of pixel intensities (    ) and average 

intensities inside (  ) and outside (  ) the curve ( ) as 
formulated in (2). 
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With applying the SFM level set method and Chan-Vese 
energy function, we can extract the exudates with high 
precision considering their boundary as shown in Figure 2. 

IV. CLASSIFICATION OF SEGMENTED REGIONS 

As we mentioned in Section 2, image enhancement is 
considered as preprocessing to increase the number of 
positive candidates. However, this step also enhances 

 
Figure 2.  White boundary marks the result of the candidate extractor while 

red shows the result of the SFM. 

 
(c) (b) 

 
(c) (d) 

Figure 1.  (a) Green channel of a part of a fundus image. (b) Result of the 

candidate extractor for the initialization of the active contour. (c) Result of 

the active contour method. (d) The final regions with a more precise shape 

information. 
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negative candidates as well, like regions close to vessels or 
on retinal images of young persons (see Figure 3). That is, we 
further try to separate the output regions of the SFM as true 
or false exudates.  For this classification we propose a post-
processing step which is based on regionwise classification. 

A. Feature Extraction and Selection 

For feature selection, we have divided the publicly 
available DiaretDB1 dataset [12] into a training and a test 
part and we have executed the algorithms described in II.A, 
II.B, II.C and III. steps on the training images. A medical 
expert manually labeled the output regions as true or false 
ones. To find efficient features for classification, we 
calculated several shape and statistical descriptors 
(approximately 50) for these segmented regions and selected 
the most useful ones with applying a two-sample t-test for 
each of them. 

Initially, as a pool for selecting the features, we have 
examined the following descriptors of the candidates: mean, 
standard deviation (STD), range (difference of minimal and 
maximal), minimal and maximal value of the gradients under 
the selected region and under the boundary of the region; the 
mean, standard deviation, range, minimal and maximal value 
of the intensities under the region and under the boundary of 
them on the  ,         and           images; the 

compactness of the regions defined as (3); and finally the 
cardinalities of the region. 

                                 

We have also observed that the spatially large false positive 
regions usually contain some tiny holes. Since exudates often 
appear close to the center of the image (macula-centered 
case), we calculated the distance between the candidate 
regions and the anatomical parts like the optic disc, macula 
and thick vessels. We also determined the angles of the line 
connecting the center of the optic disc and the regions.  

To coarsely detect the thick vessels, we apply 
morphological closing with structuring elements of different 
sizes, and we calculated their differences [13]. For macula 
detection, we considered our former work [9].  

Most of these descriptors are appropriate to differentiate 
true exudate candidates from false ones. However, several 
descriptors values have weaker classification performance. 
These less relevant descriptors cause inaccurate labeling in 
the classification. Thus, we select only the relevant 
descriptors with two-sample t-tests. First, we standardize 
each extracted descriptor individually. Then, we execute the 
t-test by calculating

   
    

    
   

           
   

          
           

 

  

for the  th descriptor where,   is the number of the true 
exudate regions and   is the number of false ones in the 

training database.    
 (/   

) denotes the mean and    
 (/   

) 

denotes the standard deviation of the  th descriptor from the 

training database of all true (/false) regions. 

Based on the    values, we can rank the descriptors 

regarding their information content. Overall, we selected the 
first 18 descriptors (see Table 1) as the optimal set of features 
for classification. 

 

B. Classification 

The performance of the considered Naïve Bayes (NB) 
classifier is rather limited because the method assumes 
independent feature model while in the practice the features 
usually depend on each other. To improve the accuracy of the 
classifier and the detection of exudates we apply the adaptive 
boosting (AdaBoost) technique [14] to optimize the NB 
classifier. The basic idea of the AdaBoost is that the 
performance of the ensemble learning is usually significantly 
better than that of single learning. Hence, the performance of 
the boosted NB may be higher than a simple Support Vector 
Machine (SVM) or k-Nearest Neighbors (kNN). However, 
AdaBoost works well only with a weak learner because the 
created model can be less dispose to overfit. 

TABLE I.  THE ORDER OF THE FEATURES ACCORDING TO THE t-TEST 

VALUES. 

No. Feature No. Feature No. Feature 

1. 
number of 

holes 
7. 

mean gradient 

under the 

border 
13. 

max of 

gradient under 

the border 

2. 
size of the 

region 
8. 

range of 

       under 
the border 

14. 
range of   

under the 
region 

3. 
angle of the 

line 
9. 

min gradient 

under the 
border 

15. 

max of 

gradient under 
the region 

4. 
distance from 

macula 
10. 

compactness 

of the shape 
16. 

distance from 

the optic disc  

5. 
STD of   

under the 
region 

11. 
distance from 
thick vessel 

17. 

range of 

       under 
the region 

6. 
mean gradient 

under the 

region 

12. 
STD of   
under the 

border 

18. 
max of   
under the 

region 

 

 
(a) (b) (c) 

Figure 3.   (a) Retinal image of a young person. (b) The region which 

causes many false positiv is marked by black. (c) False exudate regions are 

white.  
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V. RESULTS 

We have evaluated the performance of our proposed 
method on the DiaretDB1 dataset [12] which contains 89 
color fundus images. We have divided this database into a 
training and a test part containing 28 and 61 images. 

To be able to quantitatively compare the performance of 
our algorithm with other state-of-the-art exudate detectors, 
medical experts marked the exudates on this dataset. As 
evaluation, we consider the F-Score (5) to measure the 
performance. The F-Score can be interpreted as a weighted 
average of the sensitivity (6) and the positive predictive value 
(PPV) (7). The number of the true positive (TP), false 
positive (FP) and false negative (FN) are considered at pixel 
level.  

 
   

   
       

                 

               
   

             
  

     
   

     
  

     
   

Table II contains the accuracy of the implemented state-
of-the-art algorithms in the comparison regarding their F-
Score on test part of the DiaretDB1 dataset. For the sake of 
completeness, we also describe the sensitivity and PPV.  

 

As we can see from the table, our proposed algorithm 
outperformed the investigated ones [1-7] regarding the F-
Score. Figure 4 also presents an example for the output of our 
proposed algorithm. 

 

VI. CONCLUSION 

In this paper, we have proposed an exudate detection 
algorithm which merges morphological operators, active 

contour method and regionwise classification. To improve 
the sensitivity of the morphology-based step, we retain the 
rather irregular boundary of the exudates by using an active 
contour model. For this objective, we applied sparse field 
algorithm as a level set method to minimize the Chan-Vese 
energy function. Some of the extracted regions are not true 
exudates, so we further applied regionwise classification. For 
this step, we extracted specific descriptors for each candidate 
region and evaluated their efficiency. Then, we have ranked 
the descriptors based on the result of t-tests, and selected the 
most efficient 18 ones as features. For classification, we have 
applied the Naïve-Bayes classifier which is optimized by an 
adaptive boosting technique. Our experimental results 
showed that the proposed method outperformed several state-
of-the-art approaches. 
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(a) (b) 

Figure 4.  (a) Result of manual segmentation. (b) Result of the proposed 

method. 

TABLE II.  COMPERATIVE RESULTS FOR THE PROPOSED METHOD. 

 F-Score Sensitivity PPV 

Proposed 

method 
0.75 0.75 0.75 

Walter [1] 0.67 0.76 0.59 
Sopharak [2] 0.56 0.40 0.91 

Welfer [3] 0.31 0.19 0.92 
Jaafar [7] 0.17 0.89 0.09 

Sopharak [4] 0.16 0.49 0.09 
Sopharak [5] 0.11 0.82 0.06 
Sánchez [6] 0.15 0.38 0.10 
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