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Abstract—The spectral power of 5 frequently considered 

frequency bands (Alpha, Beta, Gamma, Theta and Delta) for 6 

EEG channels is computed and then all the possible pairwise 

combinations among the 30 features set, are used to create a 

435 dimensional feature space. Two new feature selection 

methods are introduced to choose the best candidate features 

among those and to reduce the dimensionality of this feature 

space. The selected features are then fed to Support Vector 

Machines (SVMs) that classify the cerebral state in preictal and 

non-preictal classes. The outputs of the SVM are regularized 

using a method that accounts for the classification dynamics of 

the preictal class, also known as “Firing Power” method. The 

results obtained using our feature selection approaches are 

compared with the ones obtained using minimum Redundancy 

Maximum Relevance (mRMR) feature selection method. The 

results in a group of 12 patients of the EPILEPSIAE database, 

containing 46 seizures and 787 hours multichannel recording 

for out-of-sample data, indicate the efficiency of the bivariate 

approach as well as the two new feature selection methods. The 

best results presented sensitivity of 76.09% (35 of 46 seizures 

predicted) and a false prediction rate of 0.15   .  

I. INTRODUCTION 

uring recent years, several methods have been proposed 

for epileptic seizures prediction. Success would 

improve the living expectations of over 50 million patients 

suffering from ictal events. Despite the published 

performances of such methods, when are applied to new 

long-term EEG recordings, usually the presented results are 

not as expected. Among the features currently published, the 

studies on the spectral power of raw EEG signal have 

demonstrated the ability to track the transient changes from 

the normal state  (interictal) to the ictal state [1] [2] [3] [4]. 

Mormann et al. [1] described a relative decrease in the 

power of the Delta band in preictal period in comparison 

with the interictal period. Additionally, this decrease was 

accompanied by a relative increase of the power in the 

remaining bands. Netoff et al. [2], proposed a patient-

specific algorithm, based on the features obtained from 

spectral powers in the sub-bands: delta (0.5-4Hz), theta (4-

8Hz), alpha (8-13Hz), beta (13-30Hz), four gamma (30-

50Hz, 50-70Hz, 70-90Hz, 90Hz-), and total power of the six 
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EEG electrodes, 3 over  the seizure focus and 3 distant from 

the focus. They reported an average sensitivity of 77.8% (35 

of 45 seizures), and a false positive rate per hour (FPR) of 

zero. They argued that the spectral power in certain sub-

bands of the iEEG (intracranial, invasive), specifically in 

higher frequency sub-bands, may play a key role in seizure 

prediction.  

Later the same authors [3] proposed a patient-specific 

seizure prediction algorithm using four different methods to 

compute spectral power of the iEEG: raw, time-differential, 

space-differential, and time/space-differential, and used 

them as features. The proposed algorithm was applied on 

recordings containing a total of 80 seizures and 437-hour of 

inter-ictal data. The best results were achieved with the 

features obtained from time/space-differential approach with 

86.25% sensitivity and 0.1281 false positives per hour in 

out-of-sample data.  

These studies presented the spectral power in different 

sub-bands extracted from one electrode or from differential 

electrodes. The objective of this work is to compare the 

different spectral power in different sub-bands and 

electrodes, and derive relations that will then be used as 

features. Two new approaches are also introduced for 

selecting features from the high dimensional bivariate 

features set. The seizure prediction problem is faced as a 

binary classification problem: the preictal and non-preictal 

states. Preictal is the state just before one seizure that one 

wants to predict. 

 Section II presents the methodological aspects related to 

feature computation and selection. The results in a set of 12 

patients are presented in Section III. Finally in Section IV 

the main conclusions are drawn.  

II. METHODOLOGY 

A. Spectral Power of Bands 

The EEG signal has usually been expressed in terms of 

particular frequency sub-bands: Delta „δ‟ (less than 4 Hz), 

Theta „θ‟ (4-8 Hz), Alpha „α‟ (8-15 Hz), Beta „β‟ (15-30 

Hz), and Gamma „γ‟ (greater than 30 Hz). The above 

classification of the sub-bands is not unique, and a variety of 

other classifications have been presented, with many 

similarities. Spectral power of raw EEG is performed by 

using discrete Fourier transform (DFT) of windowed EEG 

signal. The DFT is calculated based on the stationarity 

assumption of the EEG signal, thus the raw EEG signal is 

first segmented to minimize the effect of non-stationarity. 

Spectral power of a sub-band can be expressed as absolute 
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or normalized values. The normalized spectral power (NSP) 

feature for a given sub-band is computed by dividing the 

spectral power of the sub-band by total power (1), 

     
∑ |      | 

∑ |      |   
 (1) 

where x is a portion of raw EEG, i and tot index a given 

frequency sub-band and total frequencies respectively. 

|DFT(x)| is the absolute values of Fourier transform. The 

advantage of using the NSP values instead of absolute values 

is that they decrease the effect of changes in total power on 

the values of spectral power of sub-bands [5]. Thus the NSP 

values of five sub-bands (δ, θ, α, β, and γ) are investigated in 

this study. 

B. Bivariate Approach 

 Around 60% of the epileptic patients suffer from partial 

seizures that are related to a specific brain region [6]. 

Comparing the EEG from the focal region with the EEG 

from other regions it is likely to find significant signal 

differences, at least during the ictal phase. So, features that 

explore this spatial dependence should be considered (Fig.1). 

Multivariate features developed in this way have other 

advantages, such as the rejection of common mode 

interferences that are not related with ictogenesis. 

With the previous assumptions a bivariate approach based 

on univariate normalized power in different sub-bands is 

presented in this paper. Mathematically the new feature is 

described by (2):  

             
       

       

  {

                          
                          

                             

 (2) 

where RNSP stands for Relative Normalized Spectral Power, 

which is given by the ratio between the normalized spectral 

power for the   -th band in the   -th channel, and the 

normalized spectral power for the   -th band in the   -th 

channel. So, this feature gives the cross-power information 

not just between two channels but also between two 

frequency bands. For instance, if six channels and 5 sub-

bands are considered independently, 30 features will be 

achieved. The combination of the 30 features set by the 

proposed bivariate approach will lead to a total of 435 new 

features (  
  ). These new features are targeted to find 

preictal trends that can be used to predict seizures.   

Since the number of bivariate features is very high, the 

individual study using long-term recordings presents a 

computational challenge. So, feature selection methods were 

designed to select the most promising feature subset. In the 

next sub-sections two new approaches for feature selection 

are introduced, and will be then compared with the existent 

mRMR [7] method. 

C. Feature selection based on amplitude distribution 

A new supervised feature selection method is introduced 

based on amplitude distribution histograms (ADH). An 

ADH is the histogram of the samples of a given feature 

associated with one class. For a two-class problem two 

different ADH are considered.  

The basic idea of the method is the selection of the 

features that have the Maximum Difference of ADHs 

(mDAD). The difference of ADHs for a two-class problem 

is defined as (3): 

         (3)  

where CA is the common area of two normalized ADHs 

(Fig.2) and is calculated as: 

   ∑                           
 

 (4)  

where          is the normalized ADH of the class 1, and i 

indexes the interval that the values of two classes are 

distributed. In order to achieve the normalized ADHs, the 

original histograms are divided by the number of samples in 

each class (5). 

        
   

                 
 (5)  

The total area under each normalized ADH is one, and the 

common area is a value in the interval [0 1]. In summary, 

lower CA values represent higher separability between 

samples of different classes, in a given feature. So, features 

with low CA are more likely to improve seizure prediction 

performances.  

 

Fig.2 Common area of the ADHs of two classes (green hachure), the 

normalized ADH of the preictal samples (red curve) and the normalized 

ADH of the non-preictal samples (blue curve) 

Probe1

Probe2

Probe3

Focus of 

epilepsy

*

 
Fig.1 The bivariate approach. Relative features are achieved by dividing 

the features extracted from each channel (specifically focus channels) by 

the features of the other channels (as reference channels). 
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Since each sample is labeled, this method is supervised 

method, and currently it is developed for two classes 

problems such as in seizure prediction (preictal and non-

preictal classes). 

D. Feature selection based on percentiles 

A different measure is introduced to determine the 

separability between two classes. The idea is based on the 

percentiles of the samples of two classes. Since in the real 

classification problems, the values of the samples of the 

different classes have some overlap, searching for the 

features that have the minimum overlap could be used for 

selecting the features. In order to quantify the overlap value, 

a new measure is introduced as (6): 

    
                         

                          
 (6)  

In (6), NDP is normalized difference of the percentiles, 

            is the n-th percentile of values of the features of 

the class m (Fig.3). The samples of the classes have 

minimum overlap when the above measure is minimized 

(mNDP). According to this principle, the features presenting 

the lowest NDP should be selected. The 70
th

 and 30
th

 

percentiles are selected for class1 and class2 respectively by 

trial and error. 
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Fig.3 Difference of percentiles of n1 and n2 of two classes samples 

E. Support Vector Machines 

 Support vector machines (SVMs) are a set of commonly 

used supervised learning methods employed for 

classification problems [8]. SVM classifiers in their simplest 

form use linear boundaries to classify binary data. To 

classify datasets with nonlinear boundaries, SVM uses 

kernel functions representing the data in a higher feature 

space where linear boundaries may separate data. The 

popular Gaussian Radial Basis Function (RBF) kernel (7) is 

used,  

            
 |   | 

   
  (7)  

where   is the scale parameter (openness of the Gaussian), x, 

y are feature vectors in the input space. The Gaussian kernel 

has two hyper parameters to control classification 

performance:  the cost C and the scale parameter  . 

Parameter C controls the tradeoff between maximization 

of the margin width and the minimization of the number of 

misclassified samples in the training set [8]. Also, the   

parameter in (7) controls the width of the Gaussian surface 

of the RBF kernel. These two parameters are optimized 

through a grid search method. 

F. Output regularization 

In order to reduce the number of false alarms, the 

classification output of the SVM classifiers was subjected to 

regularization by a method that accounts for the 

classification dynamics in the preictal class, the firing power 

(FP). This methodology is explained in detail in [9].  

G. Proposed Algorithm 

Initially, the normalized spectral power features are 

extracted from 6 channels which 3 of them are related with 

the focal area and remained belong to areas far from the 

focal region. Then the relative features using the proposed 

bivariate approach are computed. Since the number of 

achieved bivariate features is very high, feature selection 

methods are used to find the best subset of features. 

Classification is carried out using LibSVM toolbox [10], 

SVMs are trained in a part of the data and tested in a 

different one. The outputs of the SVM classifier are 

regularized using the FP method. 

III. EXPERIMENTAL RESULTS 

Data from 12 epileptic patients from the EPILEPSIAE 

database [11] with long-term continuous multichannel EEG 

recordings were used to evaluate the proposed method 

(Table I). The total number of considered seizures is 82 from 

which 36 for SVM training (3 for each patient) and the 

remaining 46 are used for SVM testing.  

The normalized spectral power features were computed 

using a time window of 5 seconds. Four different preictal 

times: 10, 20, 30, and 40 minutes before each onset are used 

to label the preictal samples for training and testing the SVM 

classifier. The number of preictal samples is related to the 

preictal time, for instance, 10 minutes preictal time will 

provide 120 samples (600s/5s) for each seizure and totally 

360 samples for 3 training seizures. The remaining samples 

outside the preictal times are used as non-preictal samples. 

Then three feature selection methods (mDAD, mNDP, and 

mRMR) are applied on the labeled features to rank them.  

Afterward, since the number of non-preictal samples is 

much more than the preictal samples, and usually classifiers 

tend to produce high accuracy over the class with more 

training samples, thus the number of non-preictal samples of 

the training set is reduced by resampling to achieve a 

balanced number of samples for the two classes. 

 For each feature selection method 5 runs were performed 

selecting in each one a different size of the subset: 3, 5, 10, 

20 and 40 features. The outputs of the classifier are 

regularized by FP method with the predefined threshold of 

0.5. The best results for each patient in terms of alarm 

sensitivity (SS) and false prediction rate (FPR) of alarms are 

summarized in table 1. The best results are selected so that 

the SS and FPR are closed to the optimal performance 

points, i.e., SS=100% and FPR=0    . 
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IV. CONCLUSION 

A new bivariate approach was introduced for seizure 

prediction problem based on the normalized spectral power. 

Discriminative features were selected by two proposed 

methods. Both introduced feature selection methods have 

shown improved performance in comparison to the well-

known mRMR feature selection method. For instance, the 

mDAD method has provided a higher performance of 

seizure prediction with lower number of features (8.75 

features in average) in comparison to the mRMR method 

(9.91 features in average). The achieved results using just 

first 3 high ranked features for each feature selection method 

are presented in table 2 for comparison.     

 In average 76.09% of the seizures in the testing set were 

predicted with an average FPR of 0.15    . Results show the 

ability of the proposed techniques to predict the epileptic 

seizures. However further work is needed to improve the 

performance of the feature selection methods as well as the 

bivariate approach. One way for bivariate approach would 

be to use differential features instead of relative features. 

Our research aims at good seizure predictors with a low 

number of channels (equal or less than 6) in order to allow 

the development of transportable devices for incoming 

seizure warning. 

 

TABLE 1 
INFORMATION AND RESULTS FOR THE 12 STUDIED PATIENTS 

TABLE 2 

RESULTS OF THE 3 HIGH RANKED FEATURES 
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Patient Info. mDAD mNDP mRMR 

ID Type 
Samp. 

Rt. Hz 

No. Seiz. Rec.time (h) 
SS% 

FPR 
(   ) 

No. S.F. 
SOP 
(min) 

SS% 
FPR 
(   ) 

No. S.F. 
SOP 
(min) 

SS% 
FPR 
(   ) 

No. S.F. 
SOP 
(min) Total Test Total Test 

1 Invas 400 5 2 401 110 100 0.17 5 40 100 0.09 3 40 100 0.1 3 30 

2 Invas 400 7 4 209 18 75 0.22 3 40 75 0.16 5 40 50 0.06 40 40 
3 Invas 400 8 5 239 80 40 0.23 10 40 40 0.20 5 40 40 0.19 5 40 

4 Scalp 400 6 3 140 40 100 0.04 10 40 100 0.1 10 30 100 0.17 10 40 

5 Scalp 400 3 1 163 43 100 0.02 3 10 100 0.09 5 40 100 0.07 10 40 
6 Invas 400 12 9 217 157 77.7 0.24 5 40 44.4 0.1 10 40 22.2 0.09 3 30 

7 Scalp 512 7 4 120 37 75 0.24 40 40 50 0.13 20 10 75 0.24 10 30 

8 Scalp 512 8 4 120 62 100 0.13 3 30 75 0.09 5 40 75 0.19 10 40 
9 Scalp 512 7 4 125 23 100 0.04 10 40 100 0.08 10 40 100 0.13 10 40 

10 Scalp 512 6 3 124 65 66.6 0.08 3 10 33.3 0 5 30 66.6 0.11 10 20 

11 Scalp 256 6 3 118 68 66.6 0.24 3 10 66.6 0.11 5 40 66.6 0.04 3 40 

12 Scalp 512 7 4 117 84 50 0.01 10 40 75 0.05 3 20 50 0 5 40 

Tot./

Avg. 
  82 46 2093 787 76.09 0.15 8.75 31.6 65.22 0.1 7.16 34.1 60.87 0.11 9.91 35.8 

Type: Type of EEG recording; Invas: Invasive recording, Scalp: Scalp recording  

SS: Sensitivity of the raised alarms in percent 

FPR: False prediction rate per hour 

No. S.F.: Number of selected features 

SOP: The preictal time in minute 

ID 

mDAD mNDP mRMR 

SS% 
FPR 
(   ) 

SOP 
(min) 

S% 
FPR 
(   ) 

SOP 
(min) 

SS% 
FPR 
(   ) 

SOP 
(min) 

1 50 0.16 40 100 0.09 40 100 0.1 30 

2 75 0.22 40 75 0.28 40 25 0 20 
3 20 0.21 40 20 0.07 20 20 0.16 40 

4 66.6 0.19 40 66.6 0.07 40 66.6 0.24 10 

5 100 0.02 10 100 0.11 30 100 0.25 20 
6 44.4 0.18 30 44.4 0.17 30 22.2 0.09 20 

7 75 0.38 30 25 0 30 50 0.19 30 

8 100 0.12 30 75 0.11 40 50 0.08 40 
9 66.6 0.04 40 66.6 0.08 40 33.3 0.04 40 

10 66.6 0.07 10 33.3 0.03 30 33.3 0.06 20 

11 66.6 0.24 10 66.6 0.13 40 66.6 0.04 40 

12 25 0.01 40 75 0.05 20 25 0.04 20 
Tot.

Avg 
58.7 0.15 30 56.52 0.1 33.3 41.3 0.1 27.5 
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