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Abstract— Microwave measurements from an antenna array 

placed around the head can be used to detect changes in 

dielectric properties of the brain. In this paper an algorithm is 

developed to provide localization information of the site of an 

intra cerebral hemorrhage. The algorithm is based in the 

hypothesis that scattering parameters for an antenna pair 

close to the site of the bleeding will undergo larger changes. 

The change is measured using a feature derived from the 

scattering measurements using higher order singular value 

decomposition and is compared with the feature derived from 

measurements from a control group of healthy subjects. The 

proposed algorithm is evaluated on clinical data and the result 

is compared with computed tomography images of the 

patients. 

  

 

Index Terms— multichannel microwave measurements, 

microwave tomography, classification, HOSVD, signal 

processing, multilinear algebra 

 

I. INTRODUCTION 

icrowave tomography is an emerging affordable 

diagnostic modality which is based on the changes in 

the propagation of electromagnetic waves at 

microwave frequency while passing  a medium with 

varying dielectric property [1]. As blood has a different 

dielectric constant compared to the brain tissue, a clinically 

important application of microwave tomography is to 

localize the site of a hemorrhage in stroke patients. 

However the image reconstruction in microwave 

tomography is a nonlinear and ill- posed problem which 

demands massive calculations and in some cases it is 

impossible to solve [2].  This paper is devoted to describe a 

data driven method to provide localization information 

where measurements from a control group of healthy 

subjects is utilized. 

In the previous paper [3], the main concern was to look 

at the microwave measurement system as a whole and take 

all the data as input and detect any changes of the patients 

data compared to measurements from a controlled group of 

healthy volunteers. This method was successful and all the 

patient data could be separated from healthy data. In this 

paper, the multichannel structure of the system is utilized 

and channels of patients are compared to their  

 
 

 

corresponding channels in healthy volunteers. Finding a 

proper way to measure this change is the core of this paper. 

These changes are depicted in graphical charts which in 

turn will reveal the approximate site of hemorrhage inside 

the head.   

In this paper, first the multichannel nature of the 

measuring device and the obtained measurements are 

discussed. Then the main idea behind localization of stroke 

using a multichannel microwave setup is examined. The 

classification problem and feature extraction process are 

discussed afterwards. Then a method is suggested which 

can correlate the extracted features of channels to the site of 

hemorrhage inside the head. At the end, the actual clinical 

results are presented.  

II. MULTICHANNEL MICROWAVE SETUP 

The device which has been used to collect the data 

consists of an electronic switchbox, a Programmable 

Network Analyzer (PNA), a computer controlling 

measurement and an antenna array helmet with 10 

triangular micro strip antennas with V-shaped slots and a 

short circuit wall. Adjustable water containers have been 

used in between the antennas and the skull for better 

electromagnetic matching. The antennas have been placed 

in the helmet in accordance to the international 10-20 

system for measurement of EEG signals. The placement of 

antennas around the skull is shown in Figure 1.  A two port 

PNA is used to perform the measurements of reflection and 

transmission coefficients. A switch module has been used 

to control connections and disconnections of the antennas 

to the PNA. 
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Figure 1: Arrangement of the antennas on the scalp 

 During a measurement, that takes about 5 minutes, one 

antenna at a time will send out an electromagnetic signal 

from 0.1 to 3 GHz where each antenna will act as receiver 

in sequence. When all antennas received the signal from the 

first antenna, the second antenna will act as a sender, until 
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all antennas have both sent and received, resulting in a 10 x 

10 pair of measurements.  

As it can be observed from Figure 1 the measurement 

system has a multichannel property which means that in 

each time slot one particular antennas is sending and one 

particular antenna is receiving (corresponding to one 

channel) and in the next time slot this pair (channel) would 

change. Therefore, each channel will measure the brain in 

one particular time slot. Since the elapsed time between two 

consecutive measurements is small, we can claim that 

different channels are measuring almost the exact same 

object (brain). 

Figure 2 demonstrates how the data in each channel 1 to 

channel 15 looks like for one particular patient. As it can be 

seen, data from different channels are totally different and it 

is hard to find any pattern in data.  
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Figure 2: Channels 1 to 15 in multichannel measurement setup 

for one patient. 

III. LOCALIZATION IDEA 

In this part we describe the core idea of the localization 

method which stems from the multichannel property of the 

measurement system. Consider a case in which for example 

there is a hemorrhage in central left lobe of the brain as 

depicted in Figure 3. It is obvious that different antennas 

have different distances to the hemorrhage site. The main 

hypothesis which is considered in this case is that the closer 

the hemorrhage is in the vicinity of the direct pass between 

two antennas corresponding for one channel, there is a 

higher probability that the signal will deviate compared 

with the healthy control group for that channel. It should 

also be noticed that based on this hypothesis all channels 

sense the deviation of signals caused by hemorrhage inside 

the brain with certain probability but this probability is 

higher for the channels for which the hemorrhage is closer 

and in between the direct pass between two antennas for 

that specific channel. For example as depicted in Figure 3, 

channel (1,4) is more close to the hemorrhage site than 

channel (9,10). 

Therefore we expect the signals for channel (1,4) 

experience a larger deviation from healthy control group 

than signals for channel (9,10). On the other hand channel 

(2,8) are not as close as the channel (1,4) to hemorrhage site 

but the hemorrhage is close to the direct pass between the 

transmitting and receiving antennas for this channel. 

Therefore, we also expect for this channel to experience 

more deviation from healthy control group than other 

channels for which the hemorrhage site is not close to direct 

pass in between the transmitting and receiving antennas for 

example channel (6,10) and (7,10). 
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Figure 3: Hemorrhage in central left lobe of the brain 

In fact the basis of the localization algorithm is to 

measure the probability of deviation of the microwave 

signals due to hemorrhage inside the brain. A smart way 

would be to consider the different classification 

probabilities for different channels which depicts the 

strength of each channel in classifying a patient as patient 

and is called classification factor for that channel. These 

classification factors are the basis for the construction of 

localization charts. 

Therefore, in order to calculate the classification factors, 

we need to use a feature extraction and classification 

algorithm and implement it to all channels in the system. 

The classification and feature extraction algorithm is 

described completely in [3]. 

A. HOSVD angle 

HOSVD angle is the main feature which is used to 

classify data and the following is the steps to calculate it 

[3]. First, we stack several training sample matrices 

together and form a 3D tensor             in which    is 

different channels,    is frequency range and    is different 

measurements. In the next step, the mean of all healthy 

samples should be calculated ( ̅).  

 ̅  
 

  
∑   

  

   

 (5) 

Then mean value should be subtracted from each training 

sample in order to calculate deviations from mean (  ). 

These data will have the same structure as the original data. 

Afterwards, for each new measurement ( ), the deviation 

from mean will be calculated (  ).  

 
Figure 4: Tensor  as a sum of rank-1 tensors 

As discussed in [3], by using HOSVD decomposition it is 

possible to write each 3
rd

 order tensor      
         as the 

sum of 3
rd

 order rank-1 tensors as showed in Figure 4. The 

description of a tensor as the sum of rank-1 tensors can be 

formulated as:  

   ∑      
( )

  

   

 (6) 

in which    (     
( )    

( ))    for i =1 to    are 
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 HOSVD angle 

Figure 5: Classification of channel (1,3) for an ICH patient from 

channel (1,3) for healthy subjects using leave-one-out approach 

orthogonal bases with respect to 3
rd

 mode and 

 ( )  [  
( )
   
( )
     

( )
] 

In the case of a 3D tensor the bases will be 2D matrices. 

Using this property of HOSVD, it is possible to construct a 

subspace based on the training data [3]. 

Having    ,  ̅ and     we need to calculate the angel 

between the matrix for new unclassified measurement (  ) 
and the deviation space constructed on healthy subjects 

( 
 
)  The angle     between a matrix        and a 

subspace  is defined as: 

        
  (

〈 ( )  〉
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) (7) 

where 
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is the projection of a matrix        on a subspace  

presented with orthogonal bases     
    . 〈   〉 denotes 

the scalar product of two matrices        and        

which is defined as: 

〈   〉  ∑∑      
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and 

‖ ‖  √∑∑      
 

 

   

 

   

 
(10) 

is the Frobenius norm of the matrix       . 

The HOSVD angle (      (  )) which is the main feature 

for classification is defined as: 

      (  )    ̅           (11) 

IV. LOCALIZATION OF HEMORRHAGE 

By having feature values for each channel ready it is 

possible to test the localization idea discussed in section III 

in practice. 

A. Classification Factor 

As it has been discussed in section I the measurement 

device is consisting of 10 antennas so there is (  
 
)  

   

     
 

   different combinations for two antennas which are called 

channels and each channel can do the classification to some 

extent (see Figure 5). The performance of the classifier for 

each channel can be analyzed using the leave-one-out 

validation approach. Now if the classification results (using 

HOSVD angle) for each channel can be assumed to have an 

almost normal distribution for both healthy subjects and 

Intracerebral Hemorrhage (ICH) patients,  the t-student test 

can be used to measure the separation between healthy 

subjects and ICH patients for each channel. The value of 

this separation is called the Classification Factor (CF) and 

can be obtained by following formula: 
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(12) 

in which   
  

(    )  
  (    )  

 

       
 is the averaged variance, 

   is the number of healthy samples,    is the number of 

ICH samples,  ̅ is average value of HOSVD angle for 

healthy samples and  ̅ is the average value of HOSVD 

angle for ICH samples. In fact, the null hypothesis is that 

healthy and ICH samples are the same (         ) and 

for large value of CF this hypothesis can be rejected [10]. 

In fact CF measures to what extent one channel has been 

affected by the hemorrhage and the channels with large 

value of CF are the most informative. As it can be inferred 

from the formula there are two parameters that influence 

the CF for each channel, the difference between mean value 

of ICH and healthy for one channel and the variance of 

each channel. As the difference between the mean value of 

ICH and healthy for one channel is increased the 

classification factor would increase and as variability of 

each channel is increased the Classification factor would 

decrease.  

B. Localization Algorithm 

The basis for localization algorithm is to find the 

maximum value for the CFs for each antenna for all 

possible channels and assign a maximum classification 

factor to each antenna. It should be noticed that even when 

the two distributions are not normal, CF can still be a good 

measure for separation. To sum up, producing the data for 

localization of the ICH is consisting of 3 steps: 

1. Calculating the classification results (using HOSVD 

angle) for each channel. 

2. Computing CF for each channel. 

3. Finding the maximum CF for each antenna (CF of 

each channel is divided between its consisting 

antennas) and computing Maximum Classification 

Factor (MCF) for each antenna. 

By having MCFs ready localization charts can be 

constructed. In localization charts, antennas which have 

higher MCFs are shown with brighter red circles and 

antennas with less MCF with darker circles. For instance if 

antenna number 2 has the MCF of 80 and antennas number 

10 the MCF of 50 and all other antennas have MCF of 10 

then the localization chart would look like Figure 6. 

It should also be mentioned that, according to the 3D 

shape of the head, the obtained charts are a simplification of 

localization of hemorrhage in 2D and are an indication of  
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Figure 6: An example of localization chart 

the localization of the hemorrhage inside the brain. Having 

theses charts at hand, the antennas with highest MCF  

(bright red) construct a simple polygonal shape which 

shows the area with higher probability of hemorrhage. 

V. EXPERIMENTAL RESULTS FOR CLINICAL DATA 

he described 

algorithm has been evaluated on the data from ICH patients 

and some of the results for localization alongside of CT 

scan images are presented in Figure 7. 

As it can be seen in Figure 7, the antennas which 

construct a direct pass close to the hemorrhage site have 

larger CF and therefore MCF values and therefore are 

shown with brighter circles while the antennas for which 

the constructed pass way is far from the hemorrhage site 

have smaller CFs and are shown with the darker circles 

which justify our hypothesis. 

VI. CONCLUSION 

In this paper a multichannel structure of the microwave 

measurement system is utilized to predict the localization of 

the hemorrhage site in stroke patients. The basic idea of this 

method is based on the hypothesis that the signals from 

channels that are close to hemorrhage site experience larger 

deviation from the signals for the similar channels for 

control healthy volunteers. The main feature, HOSVD 

angle, is extracted based on Higher Order Singular Value 

Decomposition and leave-one-out approach is used for 

validation of classification for each channel with its similar 

channels for healthy control group. The performance of the 

classifier for different channels is evaluated using t-student 

test to assign a classification factor to each channel. The 

results are shown alongside with the CT images of the 

patients for better comparison. The results show that the 

channels having direct pass way close to the hemorrhage 

site deviate more and therefore have larger CFs which 

justifies the main hypothesis. 

VII. REFERENCES 

[1] Semenov S, Kellam J, Althausen P, Williams T, Abubakar A, 
Bulyshev A, Sizov Y. “Microwave tomography for functional 

imaging of extremity soft tissues:feasibility assessment” Physics in 

Medicine and Biology 2007 Sep 21;52(18):5705-19. 2007 Sep 4. 

[2] 

 

[3] ”A 

Multidimensional Signal Processing Approach for Classification of 

Microwave Measurements with Application to Stroke Type 

Diagnosis” Proceedings of 33rd Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, 

September 2011. 

Predicted hemorrhage site TCF CT Scan 

 

52 

 
-4 

 

left right

 

 

80 

 
10 

 

left right

 

 

25 

 
10 

 

left right

 

 

59 

 
21 

 

left right

 

 

74 

 
15 

 

left right

 

Figure 7: Localization results for clinical data 
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