
  

 

Abstract—Filtering has been widely used in biomedical 

signal processing and image processing applications to cancel 

noise effects in signals recorded from the body. However, it is 

important to keep the desired characteristics of the 

physiological signal of interest while suppressing the noise 

characteristics. In this study, we used anisotropic diffusion 

filter (ADF) to cancel the noise on the body surface potentials 

measurements (BSPM) with the goal of improving the 

corresponding solutions of the inverse problem of 

electrocardiology (ECG). ADFs have been applied to image 

processing and they have the advantage of preserving sharp 

edges while rejecting the noise, thus we have chosen ADFs 

instead of more conventional filtering techniques. We used 

unfiltered and filtered BSPMs to estimate the epicardial 

potential distributions. We compared Tikhonov regularization 

results when the data included measurement noise and 

geometric errors. In both cases, filtering of BSPMs using the 

ADF improved our solutions. 

 

I. INTRODUCTION 

 
Inverse problem of electrocardiology (ECG) is the 

problem of finding the cardiac electrical sources using the 
potentials measured on the body surface (BSPMs) [1]. An 
optimum solution for this problem would provide the 
clinicians with the ability to detect and diagnose cardiac 
abnormalities or the opportunity to monitor the effects of 
drugs on cardiac activity. 

 However, inverse problems most often are ill-posed, 
which implies that a small amount of noise would make the 
problem unstable and the solution would be unreliable. To 
obtain accurate solutions of the inverse ECG problem, the 
solutions are regularized by including prior information on 
the spatial and/or temporal characteristics of the epicardial 
potential distributions. Some of the regularization methods 
used in inverse ECG literature include Tikhonov 
regularization [1], truncated singular value decomposition 
(TSVD)[2], Bayesian maximum a posteriori (MAP) 
estimation[3], Kalman filtering [4],[5],[6], etc. The success of 
these regularization methods is directly related to the prior 
constraints employed, the amount of noise in the data, and the 
accuracy of the geometric model obtained by segmenting 
medical images.  
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There are several studies that aim to reduce the effects of 

geometric noise in the inverse problem solutions. To name a 

few, [7] compared the performances of L-curve, CRESO and 

zero crossing methods in determining the optimum 

regularization parameter for the zero'th order Tikhonov 

regularization in the presence of geometric errors. Greensite 

provided a theoretical formulation to incorporate the effects 

of geometric noise in the forward transfer matrix [8]. Shou 

et.al. used truncated total least squares (TTLS) algorithm to 

reduce the effects of geometric errors [9]. In a study by our 

group, effects of geometric errors were reduced by modeling 

geometric error as an additional noise parameter [6]. Filtering 

of additive measurement noise from the BSPMs to enhance 

the inverse solutions, however, has not attracted much 

interest. Filtering of ECG signals, on the other hand, is a 

well-studied subject in the literature. De-noising by Wavelet 

transformation [10], finite impulse response (FIR) filtering 

[11], infinite impulse response filtering [12], adaptive 

filtering [13] are among the most widely used ECG filtering 

techniques. In this study we have explored the use of 

anisotropic diffusion filter (ADF) to reduce the noise in the 

BSPMs that we use in inverse ECG problem solution.ADF 

was first introduced by Perona and Malik [14] and it has the 

advantage of filtering the signals or images while keeping, or 

enhancing sharp features, such as edges. It has been used in 

MRI image filtering [15], image processing and computer 

vision[16].It is well-known that the level of noise in the 

BSPMs significantly affects the accuracy of the solutions 

[6], thus we aim to improve our inverse solutions using these 

filtered BSPMs.  

 

II. METHODS 

 

A. Problem Definition 

When the cardiac sources are represented in terms of 

epicardial potential distributions (EPDs), the BSPMs are 

linearly related to these EPDs: 

 

                                 (1) 

 

where iis the time instant,            is the vector of 

BSPMs,             is the vector of EPDs,         is the 

forward transfer matrix, and               denotes the 

measurement noise. The aim is to estimate       
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B. Anisotropic Diffusion Filter  

When traditional low-pass filtering techniques such as 
Gaussian filters or linear diffusion are used, the cost of noise 
suppression is the blurring of edges in the signal. In the 
nonlinear anisotropic diffusion filtering, this blurring effect is 
reduced; the signal quality is enhanced while the details such 
as the signal edges are retained [14]. In this study, we use the 
nonlinear diffusion approach to signal filtering proposed by 
Perona and Malik [14]. In their method, the diffusion 
equation can be written as: 

  

  
                    (2) 

where div is the divergence operator,   is the gradient  
operator,   is the variance, and       is the diffusion 
coefficient, which should be chosen so that intraregion 
smoothing is favored over interregion  smoothing. This can 
be achieved by choosing       an appropriate function of the 
image gradient. Perona and Malik proposed various        
choices; for example: 

       
 

   
       

 
  

 (3) 

 

This diffusion coefficient determines the properties of 
diffusion. When the data gradient is small, the denominator is 
close to one; therefore smoothing amount is at its maximum. 
On the other hand, when the data gradient is large (e.g. at the 
edges),the denominator is large and the diffusion coefficient 
is small, thus less smoothing is performed. The constant K is 
chosen by the user and fixed during the application. 

 

C. Tikhonov Regularization 

In this approach, the solution at each time instant is found 
by minimizing the cost function: 

‖          ‖ 
    ‖     ‖ 

          (4) 

where R is the spatial regularization matrix and   is the 
regularization parameter. The corresponding solution is: 

 ̂                                (5) 

Filtered-Tikhonov regularization results are obtained by 
first applying the ADF to the BSPMs,     , then using the 
filtered BSPMs,         , to find the epicardial potentials.  

 

 
TABLE I 

THE AVERAGE AND STANDARD DEVIATION VALUES OF CC OVER TIME FOR 

DIFFERENT SNR VALUES OF THE UNFILTERED DATA. 

 Tikhonov, with filter Tikhonov, no filter 

5 dB data 0.62± 0.32 0.52± 0.30 

10 dB data 0.66±  0.28 0.58± 0.30 

15 dB data 0.72± 0.23 0.61±0.27 

20 dB data 0.73± 0.21 0.66± 0.25 

25dB data 0.73± 0.21 0.70± 0.24 

30 dB data 0.74± 0.20 0.74± 0.22 

 

III. RESULTS 

 

 Data used in this study were simulated from epicardial 

potential measurements from a ventricularly paced canine 

heart. These epicardial potentials were recorded at the 

University of Utah Nora Eccles Harrison Cardiovascular 

Research and Training Institute (CVRTI) by R.S. MacLeod 

and his co-workers[17]. The number of epicardial leads is 

490, and the number of simulated BSPM leads is 

771.Sampling rate of the signal is 1000 Hz. The forward 

problem was solved using the boundary element method 

[18].  

 The BSPMs were simulated by multiplying the 

epicardial potentials by the calculated forward transfer 

matrix, and then adding Gaussian distributed noise. Torso 

geometry used for simulating the BSPMs included the heart, 

the lung and the torso surfaces. A homogeneous model was 

used to obtain the forward matrix used in the inverse 

calculations. The results were assessed numerically using the 

correlation coefficient (CC) and the relative difference 

measurement star (RDMS) measures, and qualitatively by 

comparing iso-potential maps using the map3d visualization 

software [19]. 

 First we varied the SNR value of the BSPMs and 

compared the corresponding Tikhonov regularized solutions, 

before and after ADF application. The average and standard 

deviation values of CC and RDMS over time are presented 

in Tables I and II for varying SNR values. For visual 

inspection, average CC values are also shown in Fig. 1.  

 

These results show that when the SNR is low, filtering the 

BSPMs using ADF before solving the inverse problem 

enhances the reconstructed epicardial maps compared to 

using the unfiltered data. However, as the SNR of the 

BSPMs increases, the solutions with the filtered and 

unfiltered data produce similar results. 

 
 
 

 

 
 

 
 

 

 
TABLE II 

THE AVERAGE AND STANDARD DEVIATION VALUES OF RDMS OVER TIME 

FOR DIFFERENT SNR VALUES OF THE UNFILTERED DATA. 

 Tikhonov, with filter Tikhonov no filter 

5 dB data 0.77± 0.34 0.88± 0.37 

10 dB data 0.73± 0.30 0.82± 0.35 

15 dB data 0.67± 0.28 0.78± 0.34 

20 dB data 0.66± 0.28 0.72± 0.30 

25 dB data 0.65± 0.27 0.68± 0.29 

30 dB data 0.65± 0.27 0.65 ± 0.27 
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Fig. 1. Comparison of average CC values over time for different SNR 

values of the unfiltered data. This plot provides a visual representation of 

the results in Table I. 

 

 
Fig.2. Real (noiseless), noisy-unfiltered, and filtered BSPM maps at 
different three different time instants. Noise was added to the real BSPMs at 

15 dB SNR. 

 

 

Fig. 3. Epicardial potential distributions corresponding to the BSPMs in Fig. 
2. First column of maps correspond to the real epicardial maps, second 

column maps are the Tikhonov regularized solutions with unfiltered data 

and the last column maps are the solutions after ADF has been applied. 

 

 

 

 
Fig. 4. Correlation coefficient values with respect to time, with and without 
filtering for the data at 15 dB SNR. 

 

 

 To examine our results more carefully, we examined the 

epicardial potential distributions over time for the data at 15 

dB SNR, which represents a moderate amount of 

measurement noise. Fig. 2 shows the noiseless, noisy and 

filtered BSPMs at three different time instants, and Fig. 3 

plots the corresponding epicardial potential maps. Note that 

the ‘real’ epicardial potential maps are the true value used in 

the simulations. The CC values between the reconstructed 

and real epicardial potential distributions at all time instants 

are plotted with respect to time in Fig. 4. From these results, 

we observe that during the earlier times of the QRS region 

where the depolarized parts of the heart are restricted to a 

smaller region, filtered data produces better reconstructions; 

the initial stimulation region can be detected earlier with the 

filtered data than the unfiltered data. 

 As a final study, we added geometric noise to our forward 

models by either shifting the position of the heart (in the +y 

direction) or scaling the size of the heart. In addition, the 

data include measurement noise at 5 dB and 15 dB. The 

averages and the standard deviations of the CC values over 

time for varying amounts of scaling error and shift error are 

presented in Tables III and IV, respectively. Similar to our 

results with the additive noise, filtering of the BSPMs using 

ADF also enhances the reconstructed epicardial potential 

maps when there are geometric errors in the forward model.    

 

IV. CONCLUSIONS 

 

Here we proposed to use anisotropic diffusion filter to 
suppress noise in the BSPMs with the goal of enhancing the 
reconstructed epicardial potential distributions. We applied 
the ADF to the BSPMs in the temporal dimension. Our 
efforts continue to implement a spatio-temporal ADF, which 
we believe would be more effective than the simple one 
dimensional filter in enhancing the BSPMs. 
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TABLE III 
THE AVERAGE AND STANDARD DEVIATION VALUES OF CC OVER TIME FOR 

DIFFERENT AMOUNTS OF SCALING ERROR IN THE FORWARD MODEL. 

 Scale amount 
Tikhonov, 
with filter 

Tikhonov, 
no filter 

 
Data at 

5 dB 

%60 0.43±0.32 0.37± 0.30 

%90 0.58±0.28 0.48± 0.30 

%140 0.62 ± 0.23 0.54± 0.27 

 

Data at 
15 dB 

%60 0.59 ±0.31 0.48± 0.30 

%90 0.68 ±0.24 0.60± 0.27 

%140 0.69±0.18 0.63± 0.22 

 
 

TABLE IV 
THE AVERAGE AND STANDARD DEVIATION VALUES OF CC OVER TIME FOR 

DIFFERENT AMOUNTS OF SHIFT ERROR IN THE FORWARD MODEL. 

 Shift amount 
Tikhonov, 
with filter 

Tikhonov, 
no filter 

 
Data at 

5 dB 

+6y 0.61±0.20 0.49±0.30 

+10y 0.58±0.28 0.48±0.30 

+15y 0.54±0.23 0.45±0.24 

 

Data at 
15 dB 

+6y 0.66±0.31 0.61±0.33 

+10y 0.62±0.24 0.57±0.27 

+15y 0.58±0.24 0.54±0.26 
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