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Abstract—Clozapine (CLZ) is uniquely effective as a treatment 

for medication resistant schizophrenia. Information regarding 

its mechanism of action may offer clues to the pathophysiology 

of the disease and to improved treatment. In this study we 

employ a machine learning (ML) analysis of P300 evoked 

potentials obtained from quantitative electroencephalography 

(QEEG) data to identify changes in the brain induced by CLZ 

treatment. We employ brain source localization (BSL) on the 

EEG signals to extract source waveforms from specified 

regions of the brain. A subset of 8 features is selected from a 

large set of candidate features (consisting of spectral 

coherences between all identified source waveforms at multiple 

frequencies) that discriminate (by means of a classifier) 

between the pre- and post-treatment data for the 

schizophrenics (SCZ) most responsive to CLZ. We show these 

same selected features also discriminate between pre-treatment 

most responsive SCZ and healthy volunteers (HV), but not 

after treatment. Of note, these same features discriminate the 

least responsive SCZ from HV both pre- and post-treatment. 

This analysis suggests that the net beneficial effects of CLZ in 

SCZ are reflected in a normalization of P300 brain-source 

generators. 
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I.  INTRODUCTION  

Schizophrenia is a severe psychotic disorder affecting 

approximately 1 % of the world’s population [1]. Among 

the many drugs used for treatment, CLZ is recognized to 

have superior therapeutic effectiveness [2]. Thus, studies 

investigating differences between CLZ and other agents are 

of particular interest as they may provide clues to both 

underlying neuro-pathologies and improved treatments.  

EEG abnormalities in schizophrenic subjects and EEG 

changes due to clozapine therapy have been the focus of 

clinical studies (see e.g., [3], [4]). Event related potentials 

(ERPs) are components of the EEG signal in response to an 

applied stimulus. The P300 is an ERP component of 

particular interest because it is related to psychological 

parameters of attention/cognition.  This component, a 

positive ERP with a latency of about 300 ms,  occurs when a  
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rare task-relevant stimulus is imbedded in a series of similar 

irrelevant ones [5]. 

In this study, we use a BSL method to isolate the source 

waveforms which may then allow features with salient 

information related to clozapine treatment to be extracted.  

One of the most reliable methods to localize the EEG signal 

is the source montage approach [6]. Source montage 

analysis assumes that the electrical activity at the electrode 

locations on the scalp is a linear transformation of distinct 

cortical source/current activities (or source derivatives) 

within the brain, and uses an a priori model comprising 

predefined cortical locations (virtual current sources) within 

a head topography [6], [7], to effectively derive an inverse 

transformation from the scalp electrical activity to the 

source derivative activity. Moreover, this procedure uses a 

spatial filtering process which suppresses overlapping 

activity from neighbouring sources [7], including the infra 

slow activity (frequencies of 0.5 Hz or less) that typically 

involves several scalp electrodes on conventional montages.  

In this paper, ML methods are used to select features 

from the source waveforms, which, when processed by a 

classifier, can discriminate between the pre-treatment 

(before treatment, or BT) and post-treatment (after 

treatment, or AT) states of subjects most responsive to CLZ. 

We show these same features also discriminate between BT 

SCZ and HV, but NOT between AT most-responsive 

subjects, and HV.  The implications of these findings are 

discussed in the final section of this paper. 

II. METHODS 

A. EEG Recordings 

P300 evoked potentials were collected from 47 

chronically ill, treatment-resistant schizophrenic subjects 

both BT and AT clozapine therapy, as well as from 66 

healthy volunteers. Demographic information of the SCZ 

participants are: age [years]: avg. = 37.3, std = 9.44, min = 

22, max = 57, Gender: 29 male subjects (61.7%) and 18 

female subjects (38.3%) at start of treatment.  The HV 

demographics are: age [years]: avg. = 37.1, std=15.8, min = 

18, max = 74, Gender: 36 male subjects (54.5%) and 30 

female subjects (45.5%). 500 trials of P300 data with 

duration of 1024 ms were collected with a sampling 

frequency of 250 Hz using a QSI-9500 system. The stimulus 

for P300 data is a standard 100 ms tone presented binaurally 

where the frequencies of 1000 Hz and 2000 Hz were used 

for “common” and “rare” tones, respectively. On average 

80% of the stimuli were “common” and 20% were “rare”.  
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The system then separately recorded the average of the 

“common” and “rare” trials.  

Electrodes were placed in the 10/20 configuration 

referenced to linked ears with impedances below 5kΩ . The 

signals were band pass filtered between 0.5 and 80 Hz and 

notch filtered at 60 Hz by the QSI system during the 

recording. The signals were then digitally band pass filtered 

after recording between 0.5 and 20 Hz to partially mitigate 

the effects of eye movement and muscle artifacts.  

Clinical rating scores of symptom severity were obtained 

both BT and AT. Subjects with reduction in severity rating 

scores from BT to AT of at least 35% were designated 

“most responsive”.  Those with severity score reduction of 

less than 35% were designated “least responsive”. This 

results in 20 most responsive and 27 least responsive 

subjects.   

B. Brain Source Localization 

BSL facilitates detection of focal source processes in the 

brain by suppressing the overlap from different brain 

regions seen at the scalp. Each output from a brain source 

montage can be viewed as a gross virtual electrode placed 

onto a particular brain region. 

The BESA 5.1.8 EEG review and analysis program 

(MEGIS Software, Gräfelfing Germany) was used for 

filtering and source montage processing [8]. The BESA 

source montage method identifies source waveforms 

(montages) from 15 regions: midline fronto-polar (FpM); 

frontal left (FL), frontal midline (FM) and frontal right 

(FR); anterior temporal left (TAL) and anterior temporal 

right (TAR); central left (CL), central midline (CM) and 

central right (CR);  posterior temporal right (TPR) and 

posterior temporal left (TPL); parietal left (PL), parietal 

midline (PM) and parietal right (PR); and midline occipito-

polar (OpM) areas. Source activity in each region is 

modeled as a single regional source (containing of three 

mutually orthogonal dipoles) in that region. Regional 

sources provide more stable fits than dipoles and can 

account for any activity in an extended brain region, 

independent of the current orientations. Therefore the 

number of brain source montages was 3 15 45   for 15 

regions. These brain source montages were calculated using 

specific weighted combinations from the scalp EEG signals. 

The weights were optimized to minimize the total output 

power under the constraint of fixed power from the desired 

region.  

III. MACHINE LEARNING APPROACH 

Our first goal was to determine whether CLZ treatment 

induced changes in recorded P300 signals that differentiate 

between BT and AT conditions. To this end we developed a 

ML algorithm which identified P300 features that 

discriminated between treatment conditions. A brief 

summary of the ML process used follows.  A more detailed 

explanation of ML in the clinical context is available in [9], 

[10].  

This procedure was based on a training set, which 

consisted of the pre-treatment and post-treatment P300 

waveforms from the 20 subjects out of 47 SCZ subjects who 

were the most responsive to the clozapine treatment. The 

ML procedure was developed from this training set, and is 

summarized as follows. First a large set of features is 

extracted from the brain source signals. The dimensionality 

of the problem is reduced by selecting only the most 

discriminative features, using a feature selection procedure. 

These selected features are then fed into a classifier that 

outputs the BT/AT condition. The procedure is validated 

using a leave-one-out cross validation procedure [11]. 

A. Feature selection 

For this study, the set of candidate features consisted of 

the spectral coherence function between all 15 extracted 

source waveforms at various frequencies. The sampling 

frequency of 250 Hz and the duration of 1024 ms resulted in 

256 samples for the source signal of each region. Therefore 

the one-sided power spectral coherence function has 

(256/2+1) = 129 samples. There were 105 spectral 

coherence functions between the 15 regions in each 

direction. Hence the total number of candidate features was 

129 105 3 40635.
c

N     All candidate features were 

normalized using their corresponding z-score value. After 

normalization the most relevant features were selected using 

the supervised greedy method of [12]. This procedure was 

used to reduce the number of candidate features to a set of 

only 8
r

N   most relevant features.  

IV. CLASSIFICATION AND PERFORMANCE EVALUATION 

Let the set of most relevant features for a particular 

subject i be expressed in a vector   rN

i
x and the 

corresponding class be denoted by [BT, AT ].
i

y  The 

resulting set { , }, 1, 2, ...,
i i t

x y i M , represents a training set 

where 
t

M is the number of training patterns. In this study 

the value of 
t

M  is 40 consisting of the pre- and post-

treatment (BT and AT) data from 20 subjects.   

In our study, we used the fuzzy c-mean (FCM) algorithm 

to implement the classifiers [13]. This algorithm is an 

iterative classification method having some advantages with 

respect to other classifiers, the most prominent of which is 

its high generalization capacity for a reduced number of 

training trials. 

The proposed methodology used two leave one out 

(LOO) procedures executed in succession. The first LOO 

procedure was used to select the best 
r

N  features in order to 

avoid choosing features that are dominant in just a few 

patterns. In this process, at each iteration a list of the best 

2
r

N  features was determined using the feature selection 

procedure of [12]. After all iterations are complete, the 
r

N  

features with the highest number of repetitions (probability 

of appearance) among the available lists were selected as the 

final set of selected features. The second LOO was then 

used to evaluate the performance of the classifier.  
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V. RESULTS 

The first objective was to discriminate between the BT 

and AT conditions in regard to treatment response. Table I 

shows the classification performance of the proposed 

methodology for discrimination between BT and AT CLZ 

treatment conditions for the 20 most responsive subjects 

(same subjects BT and AT) when 8
r

N   discriminating 

features are used.  As shown in Table I, the percentage of 

correct identifications is 85% for both BT and AT EEG 

samples, which leads to the total classification accuracy 

(TCA) of 85%. The TCA is calculated by the number of 

correct identifications in two classes divided by the total 

number of EEGs.         

These discriminating features are shown in Table II. 

Since these features discriminate BT vs. AT in most-

responsive subjects, they are changed as a result of CLZ 

therapy. These features are sorted based on their pair t-

statistic absolute values. The means, standard deviations, 

and t- statistic values of the BT and AT treatment classes are 

given in columns 3, 4, and 5, respectively. The t-statistic 

value was defined as: 

BT AT

BT AT

BT AT

( ( ) ( ))
( ) , 1, 2, ..., 8,

( ) ( )

M i M i
t i i

S i S i

n n


 



                         (1)
 

where 
BT

n and 
AT

n are the number of BT and AT SCZ 

subjects (equal to 20 in this case), 
BT

( )M i and 
AT

( )M i
 
are 

the mean values of feature i for these two groups, and 

BT
( )S i and 

AT
( )S i  are the corresponding variances. It is 

noted that t-statistic value gives a rough indication of the 

relevance of the feature, and in this study is used only for 

the purpose of ordering the features in this table. It should 

be noted that only the joint characteristics of the features in 

r
N dimensional space are discriminating, not necessarily 

individual features on their own. Thus, statistically non-

significant individual feature differences between the 

classes in Table II do not necessarily imply that the feature 

fails to discriminate. 

Fig. 1 shows the clustering behavior of the feature 

vectors from the BT and AT EEG groups (for the 20 most 

responsive subjects). This figure was generated by 

projecting the 8 dimensional feature space onto the two 

major nonlinear principal components for the 40 data points 

using the kernelized principle component analysis (KPCA) 

method with a Gaussian kernel [14]. The KPCA method 

was used for visualization purpose only. As the figure 

shows, the two classes are clearly separated. Note that even 

though excellent performance is demonstrated with this 2-

dimensional representation, better overall performance is 

obtained in the 8
r

N   dimensional feature space. 

      The same set of features and methodology as in the 

preceding was then used in an attempt to differentiate SCZ 

from HV subjects using only BT EEG data.  In this analysis 

all 47 SCZ subjects BT and all 66 HV subjects were used. 

As shown in Table III, the percentages of correct 

identifications were 89.4% and 80.3% for SCZ and HV 

subjects, respectively. The TCA was 84.1%. Thus, the same 

features that discriminated BT from AT EEG samples in 

treatment responsive cases also discriminated all BT SCZ 

from HV.  

Finally, the same set of features and methodology as in 

the preceding was then used in an attempt to differentiate 

SCZ from HV subjects, this time using only AT EEG data 

and  analyzing most responsive and least responsive cases 

separately.  These results are shown in Tables IV and V 

respectively. As Table IV shows, the percent correct 

identification leads to a TCA of only 48.8% indicating that 

the selected features do not separate most responsive SCZ 

from HV when AT EEG data is used.   In contrast, Table V 

shows a TCA of 84.9% in separating HV from SCZ, when 

AT EEG data is used for the least responsive AT subjects.   

VI. DISCUSSION AND CONCLUSION  

A set of P300 derived features has been identified that 

can discriminate pre-treatment from post-treatment EEG 

states in a group of SCZ subjects who respond well to CLZ 

therapy. These same features are also found to discriminate 

most responsive subjects from HV using BT EEG data, 

whereas after CLZ treatment they no longer differentiate 

these same subjects from HV. As these features discriminate 

all BT from all AT conditions, it follows that these have 

been affected by CLZ treatment. Moreover the lack of 

differentiation between SCZ and HV when AT EEG data is 

used among subjects who responded well to CLZ suggests 

that the therapeutic effect of CLZ is associated with a shift 

of P300 brain source activity to more closely resemble that 

of a normal state. 

Our discriminating features are primarily localized over 

frontal and right temporal regions. Contemporary 

neuroanatomical studies implicate frontal involvement in 

SCZ symptomatology [15], while Bolsche et al. [16] report 

atypical right anterior hemispheric P300 activity in un-

medicated SCZ, all of which supports the above idea that 

the regions we have identified might be normalized by CLZ. 

Since the number of subjects is not large, our results should 

be interpreted with caution pending further replication or 

supportive evidence from other investigative mythologies. 

 

TABLE I.  CLASSIFICATION PERFORMANCE  DISCRIMINATING 

BETWEEN BT AND  AT IN 20 MOST RESPONSIVE (MR) SUBJECTS WITH SCZ.  

Class Predicted 

BT (MR) 

Predicted 

AT (MR) 

% correct  TCA 

BT (MR) 17 3 85% 
85% 

AT (MR) 3 17 85% 
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TABLE II.  LIST OF THE 8
r

N   SELECTED FEATURES AND THE AVERAGE , STANDARD DEVIATION (STD), AND T- STATISTIC  VALUES  OF EACH FEATURE 

FOR THE BT AND AT RESPONSIVE GROUPS. 

# Feature Average (  std) for BT Average (  std) for AT t-statistic values 

1 C(FpM, TAR) at f=19 Hz 0.70 (  1.30) -0.70 (  0.92) 3.9228 

2 C(FpM, PR) at f=19 Hz 0.60 (  1.23) -0.60 (  0.88) 3.5427 

3 C(FpM, FM) at f=16 Hz 0.55 (  0.89) -0.55 (  1.28) 3.1650 

4 C(CM, PR) at f=14 Hz 0.45 (  1.10) -0.30 (  1.30) 1.9687 

5 C(FpM, FM) at f=5 Hz 0.15 (  0.81) -0.30 (  1.41) 1.2314 

6 C(FpM, TAR) at f=7 Hz -0.15 (  1.42) 0.2 (  1.15) 0.8545 

7 C(FpM, CM) at f=5 Hz -0.2 (  1.36) 0.05 (  1.10) 0.6391 

8 C(PL, TAR) at f=4 Hz 0 (  1.08) 0.15 (  1.18) 0.4197 
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TABLE III.  CLASSIFICATION PERFORMANCE DISCRIMINAING BT SCZ 

FROM HV. 

Class Predicted  

SCZ 

Predicted 

HV 

%correct  TCA 

SCZ 42 5 89.4% 
84.1% 

HV 13 53 80.3% 

TABLE IV.  CLASSIFICATION PERFORMANCE DISCRIMINATING AT 

MOST RESPONSIVE (MR) SCZ FROM HV. 

Class Predicted 

AT (MR) 

Predicted 

HV 

%correct  TCA 

AT (MR) 9 11 45% 48.8% 

 
HV 33 33 50.0% 

TABLE V.  CLASSIFICATION PERFORMANCE DISCRIMINATING AT 

LEAST RESPONSIVE (LR) SCZ FROM HV. 

Class Predicted 
AT (LR) 

Predicted 
HV 

%correct  TCA 

AT (LR) 26 1 96.3% 
84.9% 

HV 13 53 80.3% 

 

 

 
Fig. 1 Subject-wise scatter plot of the

r
N dimensional feature space 

showing BT (blue circles) vs. AT (red squares) of the most-responsive 

subjects, projected onto the first two major nonlinear principal 

components. 
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