
 
Abstract—In this work, we study the lossless compression 

of EEG (electroencephalograph) signals using linear 

prediction and arithmetic coder.  We show that, when we 

separate the less significant bits of each signal, linear 

prediction techniques yield better prediction, and with a 

structured arithmetic coder not only our technique achieves 

better compression rates  than  other techniques reported 

previously, but also our technique is much faster than the 

others. 

 

 

I. INTRODUCTION 

There are several compression techniques applied to 

EEG signals. These techniques can be classified as multi-

channel compression techniques or single-channel 

compression techniques. In this work, we investigate 

single-channel compression of EEG signals. In single-

channel, the data collected from different channels is 

considered separately.  Some of the commonly used 

compression techniques for EEG signals are: repetition 

count , dictionary-based compression, linear prediction, 

Burrow-Wheeler Transformation, Huffman coding [1], 

adaptive linear predictive compression [2], recurrent 

neural network predictors [3], context-based bias 

cancelation [4], [5], chaos-based modeling compression 

[6], power spectral density [7], and  context-based error 

modeling using neural networks [8]. The common 

compression programs that we use in daily life are also 

suitable for EEG compression such as gzip and bzip2. 

Also, some of the techniques used for image compression 

can also be implemented for EEG signal data [9].   

 

In this work, 21 different data sets obtained from 

piglets are used. The piglets were one week old and 

weighed about 3 to 4 kilograms.  These data were 

provided by Prof Dr. Nitish Thakor from John Hopkins 

University, Baltimore for Prof. Memon [4], whom we 

obtained the data from.  

 

Therefore, we used same data sets as the ones from 

the influential study on EEG signal compression by 

Memon et al. [4] for a fair comparison our results with 

some of the previous work.   
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This paper is organized as follows:  In section 2 we 

explain the proposed technique. In section 3, we present 

the experimental results and compare them with the 

results obtained previously. Finally, in section 4, we 

conclude our work. 

 

II. PROPOSED TECHNIQUE 

There are three stages in our proposed EEG 

compression technique. These stages are: (1) the 

separation of the least significant bits from the data; (2) 

the linear prediction; and (3) the arithmetic coder. These 

stages are shown in Figure 2. 

 
Figure 1 – The pipeline representation of the stages 

 

A. The Least-Significant-Bit Technique 

 

In our experiments, 21 different EEG signal files 

were used. Each data file is 12000 bytes in size and 

digitized as 16 bits per sample but each EEG signals used 

in this project consist of 10-bit data samples. 

 

In the least-significant-bit technique, the left (higher) 

8 bits and the right (lower) 2 bits are separated from each 

EEG signal. The lowest 2 bits and the highest 8 bits are 

stored in separate files. The lowest 2 bits are stored in raw 

data format which are 1500 bytes in size.  

 

6000 * 2 / 8 = 1500 

 

In the real time implementation of this technique, 

there is a buffer for higher 8 bit values and another buffer 

for lower 2 bit values. In order to obtain and compare the 

compression results, each buffer is stored in a separate file 

for experimental purposes. All the other stages are applied 

to the file which contains the higher 8 bit values. 

Reducing 10 bit values to 8 bit values reduces the 

variance in the distribution of the values. Figure 2 shows 

the histogram for the eegl12.dat test sample, whereas 

Figure 3 shows the histogram for the eegl12.dat.upper 

(The highest 8 bits of the eegl12.dat test sample.) In 

Figure 2, it is clearly seen that the data values range 

roughly between -450 and 450.  On the other hand, Figure 

3 shows the range of the higher 8 bit of the eegl12.dat 

sample. The new values range roughly between -120 and 

120.  
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After separating off the least 2 significant bits from 

each data sample, the new distribution of the data can 

range between -128 and 127 (-2
7
, 2

7
-1) whereas the 

original data values can range between -512 and 511 (-2
10

, 

2
10

-1). This reduction in range results in a smaller 

standard deviation. In the eegl12.dat, for example, the 

standard deviation decreases from 138.1361 to 34.52201. 

Figure 4 illustrates the new signal obtained from the upper 

8 bits of eegl12.dat test sample.  

 
Figure 2:  Histogram of eegl12.dat 

 
Figure 3-Histogram of eegl12.dat.upper 

 
 

Figure 4- eegl12.dat.upper 

 

The least-significant-bit technique might be 

implemented differently; for example, separating the right 

3 bits from the left 7 bits will lower the standard deviation 

even more. However, for each file, storing 3 bits as raw 

data then will require 2250 bytes, which may cancel out 

the gain from lowering the standard deviation. 

Experimental results showed that separating the right 2 

bits from the left 8 bits gives the best compression results.  

 

B. Linear Prediction Stage 

 

Prediction-based compression techniques are well 

known and commonly used technique for data 

compression [10]. There have been previous studies on 

compressing EEG signals using prediction-based 

compression [11, 12].  

With the predictive approach, the value of the current 

sample is predicted according to the previous values that 

have already been transmitted. In order to reconstruct the 

transmitted data, only the transmission of the error values 

is needed. More precisely, if xi is the actual value of the 

sample,  ̂i is the predicted value, and êi is the error value, 

then 

xi =  ̂i + êi 

êi   xi -  ̂i 

 

Various models of linear prediction are available and 

have been applied to different types of data. It is common 

to treat EEG signals as time series; in this case, 

Autoregression (AR) is a commonly used linear 

prediction method for time series, and so is applied to 

EEG signals. AR is based on the formula 
 

   = ∑   
 
       +   =  ̂ +    

 

ai is an autoregression coefficient, xk is the value series 

under investigation, p is the order of the AR process, ek is 

the prediction error. 
 

The idea behind the AR model is that the current term 

of the series can be estimated by using a linear weighted 

sum of the previous terms, where the weights are the 

autoregression coefficients. 

Taking a 

relatively larger order makes the prediction more accurate 

but may decreases the compression ratio. Previous studies 

have determined that using  

gives the best compression [13]. 

 

In our work, we used the maximum entropy method 

to calculate the AR coefficient values for each data file, 

which is based on the formula  

 

   
 
 =    – q(∑   

 
       ) =    -  ̂ 

 
 

 

where q() is a quantization function that rounds its 

variables to the nearest integer.  

 

In order to obtain the original data, the receiver has to 

know the coefficients and the error values. Upon 

receiving the transmitted error and coefficients values, the 

receiver can produce the original signal values.  Figure 5 

shows the histogram of the error values after remapping 

the resulting values to positive integers.  
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Figure 5- Histogram of upper byte of the EEG signals, 

       after AR modeling and remapping. 

 

The distribution of the error values for higher 8-bit 

ranges roughly between 0 and 100 in this specific 

example (only the frequencies for 0 to 45 are shown on 

the graph for a clear view). Note that all the error values 

are either 0 or a positive number. This is because, after 

AR modeling, we map the error values to a positive 8-bit 

integer value, so the error values can range between 0 and 

256 (2
8
). However, experimental results showed that the 

range is usually between 0 and 100.  The new standard 

deviation of this data distribution is 13.128. As it can be 

seen, AR modeling lowers the standard deviation of the 

data significantly.  

 

 
 

Figure 6- Error values, after AR modeling and remapping. 

  

The separation of the left 2 bits of the data from the 

right 8 bits (see section 2.1) helps us keep the error value 

range less than 256. The experimental results show that, 

applying AR modeling to the data without the separation 

of the left 2 bits, and the right 8 bits, results in higher 

error values. 

 

C. Arithmetic Coder Stage 

 

Arithmetic coding is the final stage in our proposed 

technique. Arithmetic coding is a form of entropy coding 

which uses variable length codes. As a result, this coding 

procedure maps source symbols to a variable number of 

bits. Arithmetic coding is commonly used in lossless data 

compression due to its speed, low storage requirements, 

and efficiency. Huffman coding is another common 

entropy coder. However, in our experiments, we achieved 

better compression ratios with arithmetic coding. Several 

new implementation of arithmetic coding which 

incorporates improvements over a widely-used earlier 

version has been developed. During 1994-1996, while 

Peter Fenwick was studying block sorting compression 

technique [15], he developed a structured Arithmetic 

Coder that includes a run length coder for 0s and 1s. As 

shown in Figure 5, we observed that after autoregression 

applied to EEG data, the first 10 values are more 

dominant than the others.  Hence, with this observation, in 

our study, we utilized a version of Fenwick’s structured 

arithmetic coder, which yield the best results.  

 

III. EXPERIMENTAL RESULTS 

 

In our experiments, we used the same data files that 

were used in previous studies of prediction-based EEG   

 

 

 

signal compression by Memon et al. [4], and Arnavut and 

Koçak [1]. Figure 7 compares our experimental results 

with theirs. 

 

Memon, et al obtained their results by applying an 

order six AR modeling, and then context-modeling with a 

bias correction on error values [4]. They finally used a 

context-model binary arithmetic coder on the resulting 

error values. On the other hand, Arnavut and Koçak 

applied an order six AR modeling followed by Burrows-

Wheeler Transformation with Inversion Coder (BWIC) 

technique [14] on the error values, generated by the AR 

model.  

 

On these 21 sets of test data, our proposed method 

gives about 1.72% better compression than the method 

proposed in [4], on the 21 test data files. Moreover, our 

proposed method is faster than the method suggested in 

[4], since we utilize a structured arithmetic coder; while in 

[4] authors use bias cancelation and a context-model 

binary arithmetic coder. We also experimented with bias-

cancelation technique. However, bias-cancelation did not 

yield any improvement in compression, when it is used 

with the structured arithmetic coder. 
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                 Figure 7- Comparison of experimental results 
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When we compare our results with the method 

proposed by Arnavut and Koçak [1], our proposed 

technique yields 0.48% better compression, on the same 

set of data files. However, our proposed technique runs in 

O(n) times, where  BWIC runs in O(n log n) time, since 

BWIC uses BWT and Inversion coder. Both 

transformations require O(n log n) time [14], where n is 

the number of elements. Hence, our proposed technique is 

much faster and yields better results than the previously 

proposed linear predictive techniques for EEG signal 

compression. 

 

To demonstrate practical relevance of our proposed 

algorithm, we implemented the techniques proposed in [4] 

and [14] and test them on the same UNIX server, using 

the same 21 data files. To get a more accurate reading of 

compression times, all three techniques were run 10 times 

each, on each file.  Based on our experiments, we 

conclude that our proposed technique compresses 32% 

faster than the technique proposed in [4], while it 

compresses 64% faster than the technique proposed in 

[14]. 

 

IV. CONCULSION 

 

Linear-prediction-based compression of EEG signals 

is a topic that has been employed in previous studies. In 

this work, we showed that by separating the least 

significant bits and then utilizing autoregression, and later 

compressing the residuals with a structured arithmetic 

coder gives better compression results than the results 

reported previously. We also showed that there is no need 

to use bias-cancelation, or the BWIC, when a structured 

arithmetic coder is employed after AR modeling for EEG 

signal compression.   

 

Moreover, we showed that our technique is much 

faster than the other techniques reported previously. 
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