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Abstract — Falls represent an important health problem for 

older adults. This issue continues to generate interest in the 

research and development of fall detection systems. In previous 

work we proposed an acoustic fall detection system 

(acoustic-FADE) that employs an 8-microphone circular array 

to automatically detect falls. Acoustic-FADE has achieved 

encouraging results: 100% detection at 3% false alarm rate in 

laboratory tests. In this paper, we use a dataset from previous 

work to investigate how to further improve AFADE 

performance. To analyze the relationship between fall and 

non-fall signatures we used the improved visual assessment of 

tendency (iVAT) clustering algorithm in conjunction with a 

nearest neighbor based distance to find the most challenging 

false alarms. Then, we employed a genetic algorithm (GA) 

framework to perform feature selection and find the 

mel-frequency cepstral coefficients (MFCC) that improve the 

classification performance. We found that using only three 

MFCC coefficients (1, 28, 29) instead of our previous choice 

(1,2,3,4,5,6) improves the classification performance.  

I. INTRODUCTION 

alls represent an important health problem for older 

adults. One in every three adults over 65 fall each year and 

acquire moderate to severe injuries, such as head traumas and 

hip fractures, that can increase the risk of early death [1-2]. In 

the mean time, less than half of the older adults who fall 

report the issues to the health caregivers [1]. If an older adult 

who lives alone falls onto the floor and is not able to ask for 

assistance in a short period of time, he or she is more likely to 

suffer from hypothermia, dehydration, pressure sores or 

rhabdomyolosis [3]. The large number of unreported falls can 

greatly raise the chances of causing more serious health 

problems due to the delay of the medical intervention. 

Therefore, it is imperative to develop a system that can 

effectively detect a fall as soon as it occurs so that an 

immediate assistance can be provided. 

To address the intervention delay problem, multiple fall 

detection methods have been investigated in the past several 

years. The fall detection systems previously reported consist 

of two types: wearable and non-wearable devices. Most 

wearable devices use accelerometers to detect a fall by 

measuring the applied acceleration along the vertical axis [4]. 

The main advantages of the wearable devices are that they are 
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inexpensive and they can be deployed both indoor and 

outdoor. Their main disadvantages are that they can’t be worn 

during night and they might be rejected by older adults. Many 

non-wearable devices, such as floor vibration sensors [5], 

video cameras [6], infrared cameras [7], bed sensors [8], radar 

sensors [9] and acoustic sensors [10-13] have been 

investigated recently. Of all the non-wearable devices, the 

acoustic sensors have the following advantages: low cost, 

wide “field of view” and night time effectiveness. 

In our latest work [13] we proposed an acoustic fall 

detection system, acoustic-FADE, which is more robust to 

background noises and reverberation effects compared to its 

previous versions [10-12]. In some conditions with low 

background noise such as night time, acoustic-FADE 

achieves 100% detection at 3% false alarm rate. Although 

acoustic-FADE performance is encouraging, we are trying to 

reduce the false alarms further while detecting all the falls.  

In this paper, we try to achieve this goal by analyzing the 

false alarms that “are close” to falls and find ways to remove 

them. We perform closeness analysis by clustering the fall, 

non-fall signature dissimilarity matrix using iVAT. Then, we 

performing feature selection we intend to make these 

false-alarms disappear, i.e. to be classified as non-falls. For 

instance, a ‘backward fall’ and ‘dropping of a book’ may be 

difficult to distinguish if the wrong features are used, 

although they can be easily differentiated by the human ear. 

To reduce the false alarms, we developed a GA-based feature 

selection method to make acoustic-FADE more robust to the 

false alarms and easier to detect falls. 

II.   DESCRIPTION OF ACOUSTIC-FADE 

The proposed acoustic-FADE consists of two components 

– the acoustic sensor hardware and the data processing 

software. The acoustic sensor hardware consists of 8 

microphones uniformly located along a circular with 25cm 

radius. The picture of the modified version of acoustic-FADE 

hardware is shown in Fig. 1.  

 
 

 
 

 

 
 

 

 
 

 

Fig. 1 (a) shows 8 microphone mounted on a wood board 
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Fig. 1.  (a) Front view of acoustic-FADE hardware. (b) Back 

view of acoustic-FADE hardware. 
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installed inside a thin box. The processing hardware including 

a DAQ (Data Acquisition) device and an EeeBox PC is 

installed inside the box, on the back of the microphone board, 

as shown in Fig. 1 (b). The sampling frequency of the DAQ is 

set to 20 KHz and each data sample is quantized to 12 bits. 

Details of the data processing algorithm used in 

acoustic-FADE are not relevant for this paper but the 

interested reader is referred to [13].  

III. EXPERIMENTAL METHODOLOGY 

A. Dataset description 

We obtained the approval for our fall detection research 

project
 
from the Institutional Review Board (IRB) of the 

University of Missouri, Columbia (please refer to 

http://eldertech.missouri.edu/ for more details). In this paper 

we use a dataset (see Table I) that was collected in a 

home-like laboratory room [13]. 
 

TABLE I.  DESCRIPTION OF THE DATASET 

ID Fall types  (name format: ‘type’ 
-‘trend’) 

ID Non-fall types 

1 Balance-Forwards 21 Closing window 

2 Balance-Backwards 22 Typing keyboard  

3 Balance-Left 23 Key shaking 

4 Balance-Right 24 Machine noise 

5 Lose consciousness-Forwards 25 Phone ringing 

6 Lose consciousness-Backwards 26 Knocking door 

7 Lose consciousness-Left 27 Talking 

8 Lose consciousness-Right 28 Sitting on a bed 

9 Trip and fall-Forwards 29 Sitting on a couch 

10 Trip and fall-Sideways 30 Sitting on a chair 

11 Slip and fall-Forwards 31 Normal walking 

12 Slip and fall-Sideways 32 Slow walking 

13 Slip and fall-Backwards 33 Shoes shuffling 

14 Reach fall (chair)-Forwards 34 Dropping book 

15 Reach fall (chair)-Left 35 Dropping tennis ball 

16 Reach fall (chair)-Right 36 Dropping metal can 

17 Slide fall-Forwards 37 Dropping wood box 

18 Slide fall-Backwards 38 Dropping plastic bottle 

19 Couch fall-Upper body first 39 Rolling a can 

20 Couch fall-Hips first 40 Rolling a plastic bottle 

    The dataset consists of 120 fall files (20 types, 6 files per 

type) and 120 non-fall files (20 types, 6 files per type). The 

falls were performed by 3 well-trained stunt actors instructed 

by our nursing staff. Many non-falls in the dataset shown in 

Table I consist in sounds “similar” to a fall (such as dropping 

an object or sitting hard on a piece of furniture) and were 

intentionally introduced to challenge the classifier. Note that 

the non-fall types with ID 21-30 are above-ground sound 

sources while the ones with ID 31-40 are on-the-ground 

sound sources. Details about the data collection methodology 

(how to train stunt actors to fall like elderly, information 

about the stunt actors, etc) can be found in [13].  

B. Dissimilarity matrix calculation 

1) MFCC features 

We calculate the MFCC features of the enhanced signal 

(the enhanced signal is described in [13]) of each file in the 

dataset. The MFCC matrix of the enhanced signal in the p
th

 

file has the following form [13]: 

   [

           

   
           

]                    (1) 

where the rows represent the MFCC coefficient index and the 

columns is the sub-frame index. We have previously [13] 

used N=6 MFCC coefficients. In this study, we will determine 

N using a GA framework.  

2) Dissimilarity matrix 

The dissimilarity matrix D calculates the pair-wise distance 

among all the sounds (falls and non-fall) signatures. The 

ordering of the sounds in the matrix is the same as in Table I 

(i.e first 120 sounds represent falls and the last 120 represent 

non-falls). The dissimilarity matrix is computed as: 

              ‖     ‖                        (2) 

where ‖ ‖ is the Frobenius norm.   is then normalized as 

Dn=D/max(D) and displayed as an intensity image in which 

each pixel represents a dissimilarity value. 

C.  Evaluation of detection effectiveness using iVAT 

The visual assessment of cluster tendency (VAT) 

algorithm [14] is used for determining the cluster tendency or 

the possible number of clusters in a set of objects, based on 

visual assessment. First, the objects are suitably reordered. 

Second the dissimilarity matrix is regenerated based on the 

new order of the objects. Finally, the reordered dissimilarity 

matrix  ̃ is normalized and displayed as an intensity image in 

which the dark blocks of pixels along the diagonal indicate 

the cluster tendency. The improved VAT (iVAT) algorithm 

proposed by [15] is used for (harder) cases where VAT fails 

to indicate any cluster tendency. 

In this study, we apply iVAT to the dissimilarity matrix Dn 

to generate the intensity image so that we can better 

understand the patterns of the dataset. In addition, the iVAT 

image can identify which types of falls or non-falls might be 

difficult to classify due to the closeness in the feature space.  

D. GA-based feature selection 

It is well known that the performance of the classifier and 

the computational cost can be greatly improved by feature 

selection. The GA framework is one of the possible solutions 

to the feature selection problem. The main idea of a GA 

framework is to try various feature combinations and choose 

the one the maximized some objective function (called 

“fitness function”). Particular solutions to the problem are 

called individuals or chromosomes. In our case the fitness 

function attempts to minimize the intra-cluster dissimilarity 

and maximize the inter-cluster dissimilarity. Suppose we take 

M MFCCs from N, then the number of possible combinations 

for the M MFCCs is   
 . Then the fitness function of the k

th
, 

        
  combination of M MFCCs      

     ( )     ( )       ( )  (    (m) is the index of m
th

 

MFCC in the given combination and     ( )       ) can 

be written as 
       (    )                                                                                                          ( )

 
 

  ([    (    )] [     (    )]⁄ )
 
   ([      (    )] [     (    )]⁄ )
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in which   is the dissimilarity matrix defined in III.B and 

    
 

    
∑ ∑    

   
   

   
    is the average dissimilarity. 

         is a weighting factor and satisfies ∑   
 
     . 

The subscript ‘f’ and ‘nf’ denote a fall and a non-fall, 

respectively. For instance,      is the fall-fall sub-matrix of 

  (see Fig. 2). 

By encoding the coefficient indices     (m), m=1, 2,…, M,   

in binary format, an individual has the following form: 
                                 (1)         (2)             (M)  

                               ⏞          ⏞           ⏞      
The GA runs by reproducing the ‘fittest’ individuals from 

the previous generation and terminates when the fitness 

doesn’t change significantly. For each M, we obtain the best 

fitness of all generations and the fittest overall individual   ̂   

(the solution). 

The most interesting part about this feature selection 

procedure is that it is independent of the algorithm employed 

for classification (SVM, neural networks, Bayes, etc). This 

procedure strictly reflects the quality of the features. We 

believe that decoupling the two problems (feature and 

classifier selection) is a better way to analyze a classification 

problem.  

IV. RESULTS AND DISCUSSIONS 

A. (Fall, non-fall) dissimilarity matrix  

The normalized gray intensity image of the dissimilarity 

matrix described in III.B is shown in Fig. 2.  

 
Fig. 2. Normalized gray intensity image of the dissimilarity matrix. 

As we see from Fig. 2, the darker block at the upper left 

indicates that falls have very low dissimilarities with each 

other. On the other hand, non-falls (bottom right block) have 

partially higher dissimilarities among themselves due to the 

variety of activities involved in false alarm production. The 

other two blocks (nonfall-fall and fall-nonfall) indicate higher 

dissimilarities between falls and non-falls although a few 

exception may be noted. 

B. iVAT clustering 

The image of  ̃   the iVAT-ed Dn matrix, is shown in Fig. 3 

(a). In Fig. 3 (a), the large darker block included in the red 

square box represents the cluster which includes all falls, 

which means falls are more similar to themselves than to 

non-falls. There are several small darker blocks along the 

diagonal which may indicate several non-fall clusters. To 

have a better understanding of these small clusters, we need to 

further process the iVAT image. 

This could be done by converting the iVAT gray image into 

a binary image based on a properly selected threshold. We 

determine the threshold based on Otsu’s method which tries 

to separate two classes of intensity values by minimizing their 

intra-class variances [16]. The resulting Otsu threshold was 

0.67. The binary iVAT image is shown in Fig. 3 (b). 

Fig. 3 (a). Normalized gray intensity iVAT image (The darker block inside 

the red square box represents the cluster including all falls).  

(b). Binary iVAT image based on the selected threshold (The possible 
clusters are marked by the numbers. The region inside the red square box 

represents all falls in cluster 1 and the outer region of the red square box 

represents nonfalls in cluster 1). 
 

In Fig. 3 (b), the 6 dark blocks along the diagonal clearly 

indicate 6 possible clusters in the dataset. Clusters 2~6 consist 

of non-falls and cluster 1 consists of both falls and non-falls. 

The non-falls present in cluster 1 are the challenging one 

since they are more similar to falls than to non-falls for the 

given threshold. The cluster number and the included non-fall 

types (type ID, see Table I) are tabulated in Table II.  

 
TABLE II.  CLUSTERS WITH RESPECT TO THEIR INCLUDED NON-FALL TYPES 

(THE MOST CHALLENGING NON-FALL TYPE IDS ARE HIGHLIGHTED). 

Cluster# 1  2 3 4 5 6 

Type 

IDs 
28,29,30,33 22,23,25, 

27,32 

31 33 35 36, 

37 

In Table II we found that the four most challenging non-fall 

types in the given dataset are: “sitting on a bed”, “sitting on a 

couch”, “sitting on a chair” and “shoe shuffling” (accentuated 

walking). The non-fall types found in the other 5 clusters are 

very dissimilar to falls. The non-fall types not found in any of 

the clusters have more diversity in their feature patterns; 

however, they are dissimilar to falls since they have high 

dissimilarities to falls in the non-block regions in the iVAT 

image (see Fig. 3 (a)). 

C. GA-based feature selection 

In the GA framework we set the the initial population size 

to 500, the crossover probability to 0.7, the mutation 

probability to 0.03 and the weighting factors           
   . We chose M=1,2,…,6 coefficients out of 30 coefficients 

and run GA for each M. The best fitness, the indices of the 

corresponding MFCCs and the challenging non-fall types 

found by their iVATs for each M are tabulated in Table III.  

    As we see in Table III, the best fitness is obtained for M=3. 

Consequently, the best choice of coefficients should be   ̂   

(1
th

, 28
th

 and 29
th

 MFCC), which improves the fitness by more 

than 50% from 1.84 obtained using the original model (1
st
 to 

6
th

 MFCCs). It is worth noting that one of the challenging 
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non-fall types, “sitting on a chair”, is missing in the new 

model.  
TABLE III.  THE GA-BASED FEATURE SELECTION RESULTS (THE BEST CHOICE 

IS HIGHLIGHTED). 

M 1  2 3 4 5 6 

  ̂   1 1,27 1,28,29 1,26, 

28,29 

1,17, 

23.27.29 

1,19, 

26,27, 

29,30 

Best fitness 2.71 2.74 2.78 2.72 2.67 2.62 

Challenging 

type IDs 

28,29, 

30,33 

28,29, 

33 
28,29, 

33 

28,29, 

30,33 

28,29, 

30,33 

28,29, 

30,33 

    In addition, we found that the first and the last several 

MFCCs (27~30
th

) are significant in the selected features. 

These observations are in agreement to what we have found 

in previous work [13] that lower MFCC are important in fall 

discrimination (low frequency, 10-200 Hz) while higher 

MFCC are important in non-falls (high frequency) 

discrimination. What we did not know in [13], and we found 

here, was the particular MFCC coefficients needed to achieve 

best discrimination. 

D. Fall detection performance evaluation 

To evaluate the improvement of fall detection using the 

MFCC features selected in IV.C, we generate the 10-fold 

cross-validation ROC curves (height discriminator is not 

included in the recognition) [13] for the given dataset in both 

cases: old and new features (see Fig. 4). 

 
Fig. 4. Comparison of 10-fold cross-validation ROC curves in both cases of 

using the unselected MFCCs (1~6th) and selected MFCCs (1th, 28th and 29th). 

 

As we see from Fig. 4, fall detection performance improves 

slightly (0.3%) when the new features are used. In addition, 

when both cases reach 100% sensitivity, the 1-specificity or 

false alarm rate of using new features is reduced by about 3%. 

V. CONCLUSIONS 

This paper presents a study for investigating and improving 

the effectiveness of the proposed acoustic-FADE. By 

interpreting the information in the iVAT image, we found that 

the ability to detect falls is independent of their types since 

falls are very similar to themselves. We found four types of 

non-falls that are difficult to distinguish from falls.  

We introduced a feature selection method based on a GA 

framework that is independent of the type of classifier. The 

GA-based feature selection helps the classifier become more 

robust to the challenging non-fall types. Under the same 

experimental conditions, we improved the performance 

evaluation by 3% using the new features compared with the 

ones used in the state-of-the-art work in [13].   

Although the improved Acoustic-FADE achieved higher 

performance, further improvement needs to be made to deal 

with the diversity and uncertainty of the real-world data. We 

are currently developing a comprehensive fall detection 

system that uses sensor and classifier fusion to address the 

challenging types of false alarms that acoustic-FADE alone 

can’t eliminate. 
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