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Location and Activity Tracking with the Cloud
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Abstract—Helping elderly people to live independently
within their homes for as long as possible, before transitioning
to higher levels of care, can significantly reduce healthcare
expenditures. However, achieving this vision requires
continuous monitoring of the condition of elderly adults within
their homes. In particular, activity, gait velocity, movement,
and location of elderly adults are critical biomarkers for
healthy aging. We present a prototype integrating a wearable
location-tracking sensor with back-end cloud-based data
processing, thereby enabling real-time tracking and analysis of
a large number of people simultaneously. The resulting
vertically-integrated prototype provides a basic infrastructure
for future work, including new products and services that offer
real-time monitoring and early disease diagnosis to help elderly
people live independently for as long as possible.

1. INTRODUCTION

The cost of living in a nursing home now nears $250/day
per person, far in excess of the cost for assisted living
communities ($115/day) and in-home health aides ($20/day)
[1]. With the population of Americans aged 65 or older
currently projected to reach 55 million by 2020 [2], trillions
of dollars in expenses can be avoided every year by helping
elderly people to live independently for as long as possible,
before transitioning to higher levels of care. Achieving this
vision, however, requires monitoring the condition of elderly
adults in their homes, in order to determine when a transition
to a high level of care has become necessary. For example,
continuous monitoring could be used to detect when aides are
required for some acute medical care.

In particular, activity, movement, and location of elderly
adults are critical biomarkers for healthy aging. Recent
research has shown that several disease indications and health
outcomes can be inferred from activity tracking and gait
velocity, including: cognitive decline [3][4][5], balance and
propensity of falls [6][7], general activity/fitness level [8][9],
cardiovascular health [10][11], and depression [12][13]. For
example, gait velocity, performed in a conventional clinic
visit as a timed walking speed test [14], is highly correlated
with general health, aging, and decline [5], with researchers
suggesting that gait velocity be renamed as “the sixth vital
sign” [15].

In prior work, we developed a low-cost wearable sensor
that tracks the location of individuals indoors using
commonly available inertial navigation sensors fused with
radio frequency identification (RFID) tags placed around the
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smart environment [16]. While conventional pedestrian dead
reckoning (PDR) calculated with an inertial measurement
unit (IMU) is susceptible to sensor drift inaccuracies, our
proposed wearable prototype fuses the drift-sensitive IMU
with a RFID tag reader. Passive RFID tags placed throughout
the smart-building then act as fiducial markers that update the
physical locations of each user, thereby correcting positional
errors and sensor inaccuracy.

Our early prototype lacked support for tracking the
location of multiple patients simultaneously in real-time. We
now address this limitation, as described in the current paper,
by integrating the sensor-based prototype with cloud-based
data processing (Figure 1). This enables real-time-tracking of
an arbitrarily large number of people simultaneously, for use
in detecting and responding to changes in activities. The
resulting system provides a basic infrastructure for future
work, including research potentially leading to new products
and services that offer real-time monitoring of early disease
onset to help elderly people live independently.

II. RELATED AND PRIOR WORK

Existing tracking technologies are limited in their
suitability for use in in-home tracking of the elderly. The
Global Positioning System (GPS) has limited ability to
function properly indoors. Sensors that can triangulate which
room an individual is in are commonplace (whether based on
RSST wifi [17][18] or UWB radio [19]), but they are not
accurate enough to measure gait velocity or to detect specific
susceptibilities, such as likelihood of a fall or a loss in
balance. Radio-frequency identification (RFID) tags can be
placed on individuals’ bodies, but these only register location
when the tag is less than 1 meter from a fixed RFID reader
(e.g., when a person enters a room) [20][21]. Inertial
measurement unit sensors (IMUs), such as those in cell
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Figure 1. Integration of wearable localization sensors
with cloud-based analysis. Elderly adults will be able to
view and augment data through future applications,
which could also provide data to care-providers
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phones, can compute the wearer’s personal dead reckoning
(PDR) position based on the physical motion of an internal
three-dimensional accelerometer and gyroscope, but the
computed PDR drifts over time and can lead to errors of
many meters within several minutes of walking [22]. Many
similar wearable activity devices (e.g., Fitbit or Actigraph)
only track acceleration and therefore provide no information
about location nor gait velocity. Passive detectors (e.g.,
infrared detectors and cameras [23]) have difficulty
distinguishing between multiple occupants within a room.

To address these problems, we previously combined IMU
and RFID technology to achieve high-accuracy, low-cost
tracking of individuals’ locations [16]. With our proof-of-
concept localization sensor, we found that using RFID
waypoints for fiducial updating improved accuracy by
1200% compared with conventional PDR alone. The sensor
had an average accuracy better than 47 cm and cost less than
$100. This level of accuracy had previously been achieved
only with UWB-based systems, but at more than 10 times the
cost [24][19]. We expect that further accuracy improvement
could likely be obtained up to the point where RFID tags are
deployed at a density of approximately twice the read range
of the device for passive tags.

A key limitation of this prior work was that the sensor
data had to be retrospectively analyzed to calculate location,
rather than tracked real-time. We now address this limitation
by integrating cloud-based analysis software that enables
real-time monitoring of a large number of simultaneous
users, leveraging the scalability of cloud computing.

III. SYSTEM DESCRIPTION

Several new components were implemented to meet the
requirements for this project (Figure 2). These include a
client application for recording and uploading sensor data, a
service for storing and processing the uploaded data using the
Amazon Elastic Compute Cloud (EC2) platform, a module
for converting raw sensor data into location data, a service for
visualizing the results, an object for archiving data in a
database, and a service that allows other researchers to access
the data. Each component can be replicated an arbitrary
number of times, making it possible to support additional
users by deploying the software onto servers as needed.

A. Data upload client

The sensor client application passes data from the
wearable sensor on to the data processing application. It is
run on a centrally-located computer in the vicinity of the user.
The shoe-mounted sensors transmit raw binary IMU data and
RFID data to the application via Bluetooth. The binary data
stream from the sensor is parsed and uploaded in realtime to
the data processing application (B) via TCP. Running the
data upload client on a central desktop or laptop computer
restricts the possible monitoring area to the maximum range
for Bluetooth transmission between the sensor and the paired
computer. A 2“d-generati0n revision will use an application
running on an Internet-enabled Android phone. This will
compensate for Bluetooth’s limited range and allow for a
larger monitoring area within the home or building.

Sensor readings: accelerometer,
gyroscope, RFID tag proximity
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Figure 2. Software architecture integrating data

acquisition from sensors with cloud-based analysis to
provide real-time location tracking for an arbitrary
number of users.

B. Data Processing Application

The data processing application acts as a hub with data
flowing in from the sensor client application and out to the
data storage and visualization applications. It invokes a
location analysis component (C) that processes sensor data
into location data, and is hosted on an Amazon EC2 virtual
machine. Optionally, raw sensor data may be sent to the data
storage and recorded to AWS SimpleDB via the data objects
(E). Archiving raw data in this fashion is not necessary for
location analysis and leads to higher overall costs, but may be
desired in some situations, such as when another researcher
wishes to retrieve the data for use in other applications via the
data sharing service (F).

C. Location analysis

Raw sensor data are converted to location measurements
using a Kalman filtering library written in Haskell, initially
prototyped in our prior work [16]. This code has been
compiled as a dynamic library where data can be streamed as
part of the data pathway on a cloud server. This library is
loaded using a Python script, and data are inputted and
retrieved using Python ctypes module.

D. Visualizer service

The web-based location visualization application displays
each user’s location and recent path on a map shown in a web
page (Figure 3). It also provides an interface displaying
customizable statistics (e.g., for computing and displaying
activity metrics and gait velocity). HTMLS5 was used to
facilitate output to a wide range of browsers and support real-
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time data display by continually receiving the latest location
data via the standard WebSockets API. Thus, the output of
the visualization service can be embedded into any web page,
including web pages on other sites, via an iframe. A future
revision will improve latency by implementing a
visualization tool as a Java GUI application using
conventional TCP sockets.

Kitchen
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e

Master Bath Living Room

Figure 3. Visualizer servlet output, showing positions of
users along with simulated paths in a virtual house.

E. Data objects

Servlets interact with the Amazon SimpleDB database
through data access objects (DAOs), which provide an
interface for retrieving, persisting, and deleting the two types
of data objects: channels and packets. A channel represents a
stream of data from a single source, such as a stream of
gyroscope measurements. The data are contained in packets,
consisting of a series of measurements over a short timespan,
such as 1 second. The DAOs store and load packets for
channels, while providing a query-based functionality so that
packets for a specific time period can be retrieved, annotated
with additional metadata, and recorded back to the database.
In our system, the DAOs are used to archive data in
SimpleDB so that it can be retrieved later using the data
sharing service (F).

F. Data sharing and storage service

The data sharing service, needed for integrating our
system with other programs, is a web application hosted on
Amazon EC2 servers with autoscaling, managed by Amazon
Elastic Beanstalk. The interface for retrieving data is an
HTTP servlet implemented in Java, while Apache Tomcat
was used as the JSP/Servlet implementation. The
requirements for the application were to retrieve data using
an Amazon cloud storage service, and provide an API for
downloading the data via HTTP. This HTTP interface for
stored data provides a standard mechanism for data analysis
and retrieval by other tools. It can be used as a data provider
for a wide range of web-based and other applications. The
entire application runs on Linux (within an Amazon virtual
machine) and, as with other components of our system, is
easily deployed onto multiple physical machines.

IV. SYSTEM TESTING

We performed unit testing to validate functional
correctness of our system components, as well as integration
testing that stressed the amount of users’ data that can be
processed per unit of server capacity, thereby indicating how
much capacity is required to track a given number of users.

A. Unit and manual tests

A combination of JUnit and manual tests were conducted.
JUnit tests uploaded data, invoked the location analysis
component, and retrieved data for visualization. The accuracy
of the location analysis component had previously been
tested [16]. All components of the system satisfied respective
unit tests. In addition, full end-to-end tests were run
manually, where the system uploaded data from sensors,
invoked the location analysis algorithm, stored the results
into SimpleDB, and displayed the output.

B. Throughput and latency tests

We configured the system to use one Amazon “large”
server (equivalent CPU capacity of four 1.0-1.2 GHz 2007
Opteron or 2007 Xeon cores, with 7.5 GB shared RAM) to
run our data processing and location analysis tools. A
separate machine streamed IMU and Gyroscope data
(collected during testing) to the server, simulating multiple
users. In order to prevent network latency outside the
Amazon platform from affecting performance, the data
generation server was hosted on another Amazon EC2
instance within the same data center. For each of several 10
minute periods, this server sent 50 samples per second (the
sampling rate that we previously demonstrated in our prior
work [16]) per accelerometer and gyroscope axis to the
location analysis server and recorded the time required for
the system to generate location output.

We found the system latency remained relatively constant
while tracking up to 6 users simultaneously (Figures 4 and 5),
with an average latency of 750 milliseconds. With 7
simulated users, average latency started to increase. Thus, our
system is capable of providing continuous near-real-time
tracking of 6 to 7 users per server. Because additional users
could be tracked with additional servers on separate data
storage units, the number of servers is expected to scale
linearly with the number of users.
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Figure 4. System latency rose when throughput reached 7
simulated users per server (~ 2.1k samples per second).
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Figure 5. Latency consistently remained under 2 seconds until throughput reached 7 simulated users per server.
(9]

V. CONCLUSION

We demonstrate a cloud-based software infrastructure for
real-time location tracking. Each server can continually track
6 people simultaneously, with no limits on the number of
people that could be tracked in parallel by multiple servers.
The next step will be to test reliability through a long-term
field study. Security should be evaluated and tightened, to
ensure that data from sensors are authentic. Further work
could enhance performance so more users can be served per
server. We also could augment the location-tracking
algorithm with knowledge of the space being navigated,
potentially allowing us to use filtering techniques based on
where the device is not (e.g., no walking through walls or
furniture) giving higher accuracy with relatively little
computation. The resulting system is expected to serve as the
basis for additional studies into the association between daily
activities and health outcomes, thereby helping elderly people
live independently as long as possible.
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