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Abstract— In this study, we presented an experiment to
obtain the thermal relaxation time which is necessary to model
heat conduction by the hyperbolic heat equation. This exper-
iment was evaluated by finite element simulation to acquire
reliably this parameter for biological tissue. Besides that, we
measured the thermal relaxation time of agar-gelled water with
2% of concentration at 25oC. The average value of thermal
relaxation time for the gel was 7.9630s with standard deviation
of 1.4562.

I. INTRODUCTION

Thermal ablation is widely used in medical procedures
and, among the ablation techniques, radiofrequency ablation
is the most commonly used. Such procedures are guided by
imaging equipment and supported by impedance or temper-
ature measurements. However, none of those technologies
provides accurate data to physicians perform safely the
procedure. Therefore, the physicians do not know exactly
how much tissue is being heated. In this way the health
problem can still remain if it heats less than necessary, or
affecting other tissues with a higher than desired heating.

Nowadays, the heat conduction is modeled by the Fourier’s
heat conduction law. Combining Fourier’s law equation with
energy balance equation, we will have the classical parabolic
heat conduction equation:

dT

dt
= α52 T (1)

where α is the thermal diffusivity coefficient of a material.
This classical theory is based on un-physical property

that heat propagates at infinite speed. Therefore, a thermal
disturbance at a point in a medium is measured at all points
in that medium instantaneously. However, heat conduction
is due to microscopic motion and collisions of electrons and
phonons and then Fourier condition of propagation speed
cannot be sustained.

For high thermal conduction material, where the thermal
relaxation time ranges from 10−8s to 10−12s, the heat wave
has high propagation speed and the thermal propagation in
these materials can be well represented by Fourier model.
In contrast, for low thermal conduction material, like human
body, the propagation velocity is lower and this un-physical
property becomes visible.

Several studies tried to model the heat conduction more
precisely [6], [11], [7], [8], [9], [10], [14]. The most
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acceptable heat conduction model was proposed by Vernotte
[15] and Cattaneo [4]. Their heat equation is given by:

τ
d2T

d2t
+
dT

dt
= α52 T (2)

This equation is known as the hyperbolic heat equation,
where τ is a coefficient called thermal relaxation time. The
term d2T

dt2 included represents the wave damping and the term
dT
dt accounts for wave propagation. The hyperbolic equation

reduces to parabolic equation when the thermal relaxation
time goes to zero, i.e. in steady-state conditions.

Some studies analyzed the influence of thermal relaxation
time in one specific area [7], [8], [9], [14], [1], [13], [12], [2],
but, in most of them, there is not a single thermal relaxation
time value been used. This occurs because there are not
reliable values of thermal relaxation time in literature [11].

This study aimed to propose and to evaluate a method
in order to achieve reliable thermal relaxation time mea-
surements. We studied and analyzed the method using finite
element simulations. Once the experiment was adjusted, we
measured the thermal relaxation time of the agar-gelled water
which is a commonly used material to simulate biological
tissues.

II. THEORETICAL SOLUTION

After evaluation of the methods currently been used to
acquire thermal relaxation time of materials, we decided
to adapt the methodology proposed by Roetzel [11]. This
methodology explores the main difference between the equa-
tions of Fourier and non-Fourier (hyperbolic), which is the
wave speed of propagation.

In this methodology, a periodic signal is used as heat input
of the system to exploit the speed of propagation through a
material of semi-infinite geometry. The choice of this type of
geometry is a way to ensure that the periodic signal will be
attenuated in several wavelengths. In addition, the material
was considered linear and homogeneous, in order to facilitate
the analysis of these parameters.

As the input signal, a periodic signal was chosen because
only this type of signal maintains the effects of hyperbolic
heat conduction for an extended period [11]. Therefore, we
used a cosine as the input signal, propagating in the semi-
infinite medium.

Hence, to resolve equation 2, we input a exponential
complex. Therefore, in rectangular coordinate system, the
temperature signal can be expressed by:

T(x,y,z,t) = Ta(x,y,z)e
j(ωt−β(x,y,z)) (3)
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where Ta is the amplitude temperature (oC), i.e. the
measured temperature (T ) minus initial temperature of the
material (Tm), ω is the angular frequency (rad/s), t is the
time (s) and β is the phase (rad).

Using equation 3 in the hyperbolic equation 2, it becomes:

52T(x,y,z) +

(√
τω2 − jω

α

)2

T(x,y,z) = 0 (4)

Equation 4 is the wave equation (Helmholtz equation) [3],

where the propagation constant is the term
√

τω2−jω
α .

Considering only one dimension, the equation becomes:

d2Tx
dx2

+

(√
τω2 − jω

α

)2

Tx = 0 (5)

where Tx depends only on dimension x.
The general solution of equation 5 is:

Tx = {C1e
−x
√

τω2−jω
α + C2e

x

√
τω2−jω

α }ejωt (6)

To solve equation 6, we considered the boundary con-
ditions, discussed before. We choose the cosine as input
periodic signal propagating in a semi-infinite medium. Then,
the boundary conditions were:

Tx(x→+∞,t) = 0 (7)

Tx(x=0,t) = Tax cos (ωt) (8)

where Tax is the amplitude temperature (oC) in only x
dimension.

With conditions 7 and 8, the solution of equation 6 is:

Tx = Taxe
−x
√

τω2−jω
α cos (ωt) (9)

Taking only the real part of equation 9:

Re{Tx} = Taxe
−x
√

ω
2αµ cos

(
ωt+ x

√
ω

2α

1

µ

)
(10)

where µ =
√
(τω)2 + 1− τω.

The method used to obtain the thermal relaxation time is
based on the temperature signal of two fixed point in the
same material. Calculating the amplitude ratio and the phase
difference of the temperature wave measured in these two
points, the following equations are obtained:

A =
Taxe

−x1

√
ω
2αµ

Taxe
−x2

√
ω
2αµ

= e(x2−x1)
√

ω
2αµ (11)

and

P = x2

√
ω

2α

1

µ
− x1

√
ω

2α

1

µ
= (x2 − x1)

√
ω

2α

1

µ
(12)

where x1 and x2 are the positions of the two points (m).
Isolating µ of equations 11 and 12, we will have:

µ =
lnA

P
(13)

µ =

(
lnA

x2 − x1

)2(
2α

ω

)
(14)

µ =

(
x2 − x1
P

)2 ( ω
2α

)
(15)

Since µ =
√

(τω)2 + 1 − τω, we have three different
forms to obtain the thermal relaxation time. Note that the
equations 14 and 15 only can be used if the thermal dif-
fusivity of the material and the distance between the two
points are known. Therefore, we used the equation 13 and
we obtained:

τ =
1− µ2

2ωµ
=
P 2 − (lnA)2

2ωP lnA
(16)

If the thermal diffusivity is not known, it can be obtained,
after using the equation 13, by the following equations:

α =

(
x2 − x1
lnA

)2
ωµ

2
=

(
x2 − x1
P

)2
ω

2µ
=
ω (x2 − x1)2

2P lnA
(17)

III. EXPERIMENTAL APPARATUS

With the mathematical method demonstrated, it was possi-
ble to build a thermal system that uses the proposed method
to obtain a reliable value of the thermal relaxation time
of the sample. Therefore, this system needed to reproduce
the conditions established to solve hyperbolic equation, i.e.
cosine as input signal in a semi-infinite, homogeneous and
linear material.

We constructed an isolated thermal box, inspired on the
experiment proposed by Roezel in [11], as shown in two
dimensions on figure 1. It is made of stainless steel (1, 2, 4)
to be resistant and, internally, it has an acrylic parallelepiped
(3), separated from the steel plates by polyurethane (2).
Inside this acrylic parallelepiped, it is placed a sample of
material being tested (7). Thus, we wanted to mechanically
and thermally insulate the material to be tested in the external
environment.

At the bottom of acrylic parallelepiped, there is a copper
plate to improve heat transfer between the material sample
and the peltier device (5), which is the component that
generates heat signal. To function properly, the peltier needs
a stable temperature in one side. Thus, at the bottom of
peltier, it was placed a hollow steel parallelepiped (4) which
serves as a container for fluid to establish the temperature.

Through the isolated thermal box, there are 7 holes (6),
where thermocouples are placed for measurement of thermal
waves. The signals from the thermocouples are the signals
to be worked out by the method proposed.

To maintain the correct operation of the isolated thermal
box, an auxiliary system was organized. A simple scheme of
the auxiliary system proposed is shown in figure 2.
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Fig. 1. Isolated thermal box design.

The two thermal baths (a), in figure 2, had the function to
establish through water the temperature of two parts of the
insulated box. The first thermal bath kept the temperature
inside the hollow steel parallelepiped to keep the peltier
working properly and the second thermal bath kept the
environmental temperature of the system. Thus, the isolated
thermal box was covered with a plastic bag and inserted into
the water of the second thermal bath. The first thermal bath
maintained its temperature at 18oC and the second was kept
at 25oC.

The collection of the temperature signal was performed by
the thermocouples, positioned in the holes of the insulated
box. These thermocouples are type K and have 0.10C accu-
racy. The thermocouples were connected on the acquisition
module (b), which is composed by NI 9213 module and
CompactDAQ module, both from National Instruments. The
temperatures collected by the thermocouples were sent to
the NI 9213 module. The NI 9213 module was programmed
to scan a sample per second (1Hz) with a precision of 16
bits/sample. This module was attached in a CompactDAQ
module, which was responsible to protocol the digital data
and to send them via USB to the computer (c).

In the computer, data acquisition software was developed
to extract the digital data from NI CompactDAQ protocol
and to store them. The recorded data were then passed to
a Matlab program (The MathWorks, Inc), an also computer
software, for the method calculation. The Matlab program
performed the data regression and the amplitude and phase
of the signal extraction. With the amplitude and phase of the
signal, it calculated the thermal relaxation time and thermal
diffusivity through the equations 16 and 17 respectively.

The data acquisition software was also responsible for gen-
erating the heat wave at the terminals of the peltier device.
For this purpose, it has implemented a digital PID controller
(Proportional Integral Derivative controller). Therefore, it
was possible to minimize the occurrence of distortions and

errors in signal generation, improving the quality of acquired
data.

The output data of the PID controller were sent to the
peltier device by the power amplifier module (d). The
power amplifier module had a AT90USB128 microcontroller
(Atmel Corporate) that received the digital signal through
USB and converted it to analog. With operational amplifiers,
power amplifier module conditioned the signal with high
electrical current (approximately 2A) to be sent to the peltier
device.

Fig. 2. System overview.

In order to test the apparatus, we used a sample of
agar-gelled water with 2% of concentration, which has a
known thermal diffusivity, as the material to be searched.
Therefore, it was possible to verify if the thermal relaxation
time measured presented reliable results, after comparing
the thermal diffusivity known and the thermal diffusivity
calculated by the method.

IV. METHOD ANALYSIS

To analyze the size of the insulated box and, consequently,
the boundary conditions, we simulated the heat system in
finite elements. Because the insulated box is symmetric, its
structure was designed in 2D on Comsol Multiphysics (Com-
sol). It was designed with one central material, consisted of
agar-gelled water, two materials around the core material,
consisted of polyurethane, and one thin material on the top,
consisted of stainless steel. The size of each material was
taken from the original insulated box.

The heat system was simulated with the heat PDE (partial
differential equations). The thermal diffusivity values used
for polyurethane plates and stainless steel were 6.574 ·
10−7m2/s [5] and 4.2 · 10−6m2/s [5] respectively. On
the tested material place, we used 1.4 · 10−7m2/s [5] for
the thermal diffusivity and 0s for the thermal relaxation time.
On the simulation, we used a cosine thermal wave of 5oC
amplitude and 10 minutes period as the peltier signal.

The data collected on the simulation were processed by
the Matlab software. As result, the average of the thermal
relaxation time was 0.12s and its standard deviation was
0.30. In another simulation, we exchanged the thermal re-
laxation time coefficient in the simulation as 40s to see
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if a thermal relaxation time of that order could affect the
boundary conditions. The result obtained was 40.8s with
standard deviation of 0.7. The thermal diffusivity results
presented almost the same aspects of the thermal relaxation
time results on the simulation.

Thus, we guarantee that the boundary conditions of exper-
imental heat system were the same of that proposed by the
theoretical solution if we use a cosine of 5oC amplitude and
10 minutes period as the input thermal signal. This guarantee
is valid even so the thermal relaxation time of the material
varies from 0s to 40s.

V. RESULTS
After examining the proposed method and the experiment,

we established a protocol to conduct the experiment sessions.
In this protocol, which was tested and modified until its
adequacy, a session consisted of two hours of continuous
operation of the experiment. Therefore, the sample received
a total of 12 periods of the cosine heat wave and rested for
30 minutes.

In this protocol, the first 30 minutes of experiment were
retained from the analysis to stabilize the cosine signal in the
sample. Thus, for each session of the experiment, we got 9
periods of the cosine signal in each of the thermocouples. In
order to lessen the influence of noise in signals, regression
was performed on the data and it was excluded from the
analysis those signs that the regression errors were above
3%. Thus, it was possible to ensure the quality of thermal
waves for the extraction of reliable thermal coefficients.

The samples of water-agar, were performed 13 sessions of
the experiment, using two different samples. The objectives
of these samples were to evaluate the experiment, because
its thermal diffusivity is known, and to get the thermal
relaxation time of this material widely used to simulate
biological tissues.

After performing the experiment on that protocol, the
results of thermal relaxation time, which had up to 3% of
error on the regression of the data collected, were removed
and 105 thermal relaxation times were obtained. The average
of the thermal relaxation time obtained was 7.9630s and its
standard deviation was 1.4562.

To verify if these results were consistent, the same pro-
cedure was done to obtain the thermal diffusivity value of
the agar-gelled water. The average of the thermal diffusivity
obtained was 1.3951 · 10−7m2/s and its standard deviation
was 1.9313 · 10−9.

The most acceptable value for the water thermal diffusivity
at 25oC is 1.4 · 10−7m2/s. When we compare this value
to the average obtained on this research, we can see that
they are very close. Furthermore, this analysis indicates that
the results of thermal relaxation time obtained with this
methodology are quite reliable. Therefore, the average value
of thermal relaxation time for agar-gelled water with 2% of
concentration at 25oC should be 7.9630s.

VI. CONCLUSIONS
With this research, we expect to give to the scientific

society a reliable methodology and experiment to obtain

results of thermal relaxation time. It is expected that the
results presented strengthen the need of further studies about
the usability of the hyperbolic heat equation in modeling the
heat propagation. Furthermore, a reliable thermal relaxation
time for agar-gelled water at 25oC is shown.

The experiment, presented in this study, has obtained
7.9630s for the thermal relaxation time of the agar-gelled
water with 2% of concentration at 25oC. Besides that, the
thermal diffusivity obtained was 1.3951 · 10−7m2/s.

In relation to the ablation or laser procedures, because the
agar-gelled water is a commonly used material to simulate
biological tissues, it can be investigated if modeling those
procedures with hyperbolic equation makes significant differ-
ence on results. Even the influence of the thermal relaxation
time is already known, nobody had an exact value of this
coefficient. In this study, we contribute to evaluate more
exactly the influence of the thermal relaxation time on heat
conduction.
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