
  

 

Abstract—Electromagnetic simulation with anatomically 

realistic computational human model using the finite-difference 

time domain (FDTD) method has recently been performed in a 

number of fields in biomedical engineering. To improve the 

method’s calculation speed and realize large-scale computing 

with the computational human model, we adapt 

three-dimensional FDTD code to a multi-GPU cluster 

environment with Compute Unified Device Architecture and 

Message Passing Interface. Our multi-GPU cluster system 

consists of three nodes. The seven GPU boards (NVIDIA Tesla 

C2070) are mounted on each node. We examined the 

performance of the FDTD calculation on multi-GPU cluster 

environment. We confirmed that the FDTD calculation on the 

multi-GPU clusters is faster than that on a multi-GPU (a single 

workstation), and we also found that the GPU cluster system 

calculate faster than a vector supercomputer. In addition, our 

GPU cluster system allowed us to perform the large-scale FDTD 

calculation because were able to use GPU memory of over 100 

GB. 

I. INTRODUCTION 

UMERICAL simulation with computational human 

models in anatomy has recently been performed for 

studies on medical applications and biological effects [1], [2]. 

The finite-difference time-domain (FDTD) method [3], one of 

the electromagnetic analysis methods, has mainly been used in 

these studies using computational human models. 

High-performance computer (HPC) systems, such as 

supercomputers, were until a few years ago generally needed 

to perform the FDTD calculation with computational human 

models, because the FDTD calculation runs very slowly and 

requires a large amount of computational memory.  

Recently, general-purpose computing on a graphics 

processing unit (GPGPU) has received considerable attention 

in many scientific fields [4]-[6] because a GPGPU offers high 

computational performance at low cost. We previously 

implemented the three-dimensional FDTD method on a single 

GPU using Computer Unified Device Architecture (CUDA) 

[7], and also found that three-dimensional FDTD calculation 

using a single GPU (NVIDIA Tesla C1060) can significantly 

reduce run time compared to when using a conventional CPU 

(Intel Xeon X5450) , even with a native GPU implementation 

of the three-dimensional FDTD method [8]. However, the 

available memory of a single GPU is very small to perform the 

three-dimensional FDTD calculation. Therefore, in order to 
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improve the calculation speed and the available memory, we 

adapt the FDTD code to multi-GPU environments [8].  

In this paper, to more efficiently perform the large-scale 

FDTD computation with real computational human model, we 

attempt to implement the three-dimensional FDTD code on 

multi-GPU cluster environment. The approach is adapted to 

simulate an electromagnetic field using a human model, and 

its performance is evaluated. 

II. CONVERTING CPU FDTD CODE TO GPU-CLUSTER CODE 

A. Parallel Computation on Multi GPU Cluster 

GPU Cluster consists of multiple PCs, which is called 

"cluster nodes", connected with high speed network such as 

"Infiniband". Each cluster node is equipped with single or 

multiple GPU subsystem that is a board with GPU and 

dedicated GPU memory. Figure 1 shows a GPU Cluster 

system architecture. 

 
Fig. 1.  GPU Cluster system 

 

There are multiple level of parallelism in a GPU Cluster 

System; inner GPU level, intra GPU level. 

Inner GPU parallelism is based on Single Program 

Multi Datastream (SPMD) model. A GPU has hundreds of 

processors called stream processors (SPs). In SPMD model, 

all SPs execute the same program but for different data 

elements. It is capable of executing thousands of GPU threads 

that CUDA generates, which are bundled into a thread block. 

Thread blocks are arranged into a grid [10]. CUDA maps 

parallelizable code fragment to these GPU threads.  

Intra GPU level parallelism in multi GPU subsystems is 

based on distributed memory parallel model. Each GPU is 

allowed to access only to the dedicated GPU memory. 

Therefore, it is required to divide the computation domain into 

subsets that fit to GPU memory and loaded before GPU 

computation. GPU-GPU communication and synchronization 

control are required for this level parallelism.  
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B. Existing C Code to CUDA Code 

In FDTD method, electric and magnetic fields are 

discretized with regular grid and allocated as three 

dimensional arrays. Field values are updated with 

parallelizable for-loop. A typical example of the field update 

for-loop shows in Fig.2. (Not actual code) EX is an array for 

x-element of electric field. HY and HZ are y and z element of 

magnetic fields, respectively. The for-loop is converted to a 

pair of CUDA kernel code (lower) and kernel call (upper). 

(Fig.3) CUDA generates thousands of GPU threads that 

simultaneously execute kernel program on SPs. 

 
for( int k = 0; k < NZ; k ++) 

  for( int j = 0; j < NY; j ++) 

    for( int i = 0; i < NX; i ++){ 

        int kji = NX*NY*k+NX*j+i ; 

         EX[kji] = c0*EX[kji]  

                  +c1*(HZ[kji] - HZ[kji-NX]) 

                  -c2*(HY[kji] - HY[kji-NX*NY]) 

} 

Fig. 2.  A typical field computation for-loop 

 
// kernel call 

exKernel<<< grid, threads >>>(  dEX, dHY, AHZ) ; 

// CUDA kernel program 

__global__  void   

exKernel(   float* dEX,   float* dHY,  float* dHZ)  

{ 

    int ii = blockDim.x*blockIdx.x + threadIdx.x ; 

    int jj = blockDim.y*blockIdx.y + threadIdx.y ; 

    int kk = blockDim.z*blockIdx.z + threadIdx.z ; 

    int kji = NX*NY*kk+NX*jj+ii; 

    dEX[kji] = c0*dEX[kji] 

             +c1*( dHZ[kji]- dHZ[kji-NX    ] ) 

             -c2*( dHY[kji]- dHY[kji-NX*NY ] ); 

}; 

Fig. 3.  A pair of CUDA kernel program (lower) and kernel call (upper) 

 

All the data used in CUDA kernel is required to transfer 

GPU memory before CUDA kernel call. After the 

computation is completed, the results may be transferred to 

host memory.  Process flow of three-dimensional FDTD 

program by GPU follows: 

 

1. Initialize GPU 

2. Allocate GPU memory and copy initial data to GPU 

3. Time step for-loop{ 

          execute electric field computation on GPU 

          execute magnetic field computation on GPU 

} 

4. Transfer GPU data to host memory 

5. Release GPU memory and Finish 

C. Implementation of GPU-GPU Communication on GPU 

Cluster 

As FDTD is based on finite difference schema, GPU 

computes an array element by referring adjacent array element. 

When a GPU updates an element at the boundary of the 

decomposed data array, it is going to refer to the adjacent data 

elements that reside another GPU subsystem. GPU does not 

access another GPU memory but copies of referenced data 

elements are allocated. These reference data elements are not 

updated by GPU. Therefore to keep coherency between the 

original and copied data elements, the updated values of the 

original elements are copied from another GPU memory and 

replace the value of copy elements after the original elements 

are successfully updated.   

Figure 4 shows an example of referenced data update 

1D data decomposition  (see also Fig.2). k-th GPU computes 

up to index  "n" of EX (x component  of electric field array) 

and HY (y component of magnetic field array), and k+1 th 

GPU computes greater than index "n" of E and H (elements of 

E and H are depicted by green small rectangles). From finite 

difference schema of FDTD, k-th GPU computes EX[n],  by 

referring HY[n], and HY[n+1]. Unfortunately HY[n+1] 

resides on (k+1)-th GPU memory where k-th GPU cannot 

access directly. Similarly, (k+1)-th GPU computes HY[n+1] 

by referring EX[n] and EX[n+1], where EX[n] resides on k-th 

GPU memory, where (k+1)-th GPU cannot access to. 

These reference data elements are copied on GPU that 

requires these elements for computation (depicted in yellow 

small rectangles).  k-th GPU just refers the copy of HY[n+1] 

and does not updates its value. To keep the original HY[n+1] 

on (k+1)-th GPU and the copied element on k-th GPU 

coherent, the newly updated original value are transferred 

from (k+1)-th GPU to k-th GPU .  

 
Fig. 4. Coherency between original and reference copy data 

 

Figure 5 shows synchronization and GPU-GPU 

communication flow inside the FDTD time step. Each 

rectangle represents a task of computation or control. There 

are N cluster nodes, and each cluster node is equipped with M 

GPUs. At the end of electric field computation, all the GPUs 

with in a cluster node wait for completion of other GPU's 

computation. This type of synchronization is achieved by 

"barrier synchronization". Within a cluster node, OpenMP 

barrier synchronization function is used in combination with 

cudaThreadSync. Barrier synchronization among all the 

GPUs is implicitly achieved by MPI (Message Passing 

Interface) send and receive functionality. At this point, all the 

(N*M) GPUs in this cluster complete the electric field 

computation, then "GPU-GPU communication" that updates 

the reference-copy data elements with transfer the newly 

updated original data values starts. At the end of GPU-GPU 

communication, all the GPUs waits for data transfer is 

completed. After all the GPU-GPU communication is finished, 

GPUs start to compute magnetic field with magnetic field 

computation. At the end point of magnetic field computation, 

synchronization is taken as the end of electric field 

computation.  

In order to convert the code to GPU cluster, 

implementing GPU-GPU communication and 

synchronization is required. Within a cluster node, OpenMP 

and CUDA function is used to GPU-GPU communication, 
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whereas communication between cluster nodes is 

implemented with MPI. 

Field data arrays are decomposed along Z-direction, 

which is 1D decomposition. Assume there are N cluster nodes 

with M GPUs, and there exists totally M*N GPUs. Each GPU 

is identified with the cluster node id, k, and GPU ID in k-th 

cluster node. In MPI environment, the cluster node id is 

equivalent to MPI rank. Then domain is partitioned into M*N 

subsets. We relate (k,l) th GPU to k*M+l th subset of the 

domain. Each GPU communicates just two contiguous 

indexed GPUs. If GPU ID "l" is neither 0 nor M-1, then GPU 

communicates with GPUs within the same rank. In such case, 

GPU-GPU communication is achieved by combination of two 

cudaMemcpy, DeviceToHost and HostToDevice. If GPU ID 

is equal to 0 or M-1, it communicates with GPU resides in 

adjacent MPI rank node. In this case, MPI_Send and 

MPI_Recv are used in addition to cudaMemcpy. 

 
Fig. 5. GPU Cluster task flow 

 

Figure 6 illustrates GPU-GPU communication in 

pseudo code. This code is executed in all OpenMP threads on 

all cluster nodes.  

 
// MPI rank = k 

#pragma omp barrier 

cudaMemcpy(boundarydata,DeviceToHost); 

#pragma omp barrier 

#pragma omp master 

// if GPU id l==0 or M-1 

     MPI_Send(boundarydata, rank=k-1,k+1 ); 

     MPI_Recv(boundarydata, rank=k+1,k-1 ); 

#pragma omp barrier 

cudaMemcpy(boundarydata,HostToDevice); 

#pragma omp barrier 

Fig. 6.  Pseudo code for GPU-GPU communication 

 

Assume the current thread is related to (k,l)th GPU, that 

is l-th OpenMP thread with MPI rank k. The array elements on 

the boundary of the decomposed array are copied back to host 

memory with cudaMemcpy function. All the GPU wait for 

completion of these data transfer by "#omp pragma barrier" 

OpenMP barrier synchronization functionality. If this 

OpenMP thread id , that is GPU ID, is equal to 0 or M-1, the 

boundary data should be send to (k+1) or (k-1) th MPI rank 

with MPI_Send function and the  boundary data should be 

received from MPI rank (k-1) or (k+1). Finally, updated 

boundary values are transferred to GPU. MPI_Send and 

MPI_Recv are synchronized function that wait for completion 

of the process. This means that all GPUs with GPU ID is 0 or 

M-1 wait for completion of MPI communication. Therefore, 

MPI send-receive pair in combination with OpenMP barrier 

functionality realizes barrier synchronization for all GPUs. 

III. GPU CLUSTER ENVIRONMENT 

Figure 7 shows our multi-GPU cluster system and Table 

1 shows the specification of the system. The GPU cluster 

system consists of three nodes. The seven GPU boards 

(NVIDIA Tesla C2070) are mounted on each node. The each 

GPU board has 6 GB GDDR5 RAM. GPU memory of 42 GB 

per node is available. Therefore, the memory of 126 GB 

(42GB × 3 nodes) is available in the cluster system.  

 

 
Fig. 7. Multi-GPU cluster system 

TABLE I.  SPECIFICATIONS 

CPU 
[Intel Xeon X5677 (3.46 GHz, 12MB) × 

2 ] × 3 nodes 

Main memory 
96 GB (DDR3 1066 MHz  

Reg.ECC 16 GB × 6)  × 3 nodes 

GPU [NVIDIA Tesla C2070 × 7 ] × 3 nodes 

CUDA cores (GPU) [448 core × 7 ] × 3 nodes 

GPU memory [6 GB ×  7 = 42 GB] ×  3 nodes = 126 GB 

Memory Interface (GPU) GDDR5 SDRAM 384 bit 

Memory Bandwidth (GPU) 144 GB/sec 

Internode communication InfiniBand QRD 

Operating System Linux (CentOS 5.5) 

CUDA version CUDA 4.0 

IV. PERFORMANCE TESTS 

A. Performance of multi-GPU cluster system 

To examine the performance of the FDTD calculation 

on multi-GPU cluster system, we conducted a test using the 

calculation model shown in Fig. 8. The model was a cube 

domain, and its center was allocated a sphere (25 cells in 

radius). The incident wave was an assumed plane wave. The 

calculation domain was 600 × 600 × 600 cell size. 

Figure 9 shows the calculation time of our multi-GPU 

cluster system. Computation time is calculated for part of the 

electromagnetic field update. The thread block size is 32 × 16. 

Calculation speed with two GPUs in one node was 

approximately 2.3 times faster than with seven GPUs in the 

same node. In the cluster system, the communication times 

between cluster nodes that do not occur in one node can 

significantly affect the overall time of three-dimensional 
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FDTD calculation. However, the speeds with three nodes (21 

GPUs) were approximately 1.4 times faster than with one 

node (7 GPUs).  

 
Fig. 8. Calculation model for performance test 

 
Fig. 9. Computational performance of multi-GPU cluster system 

B. Performance test for a specific example using a human 

model 

We usually use a vector supercomputer SX-8R (NEC) 

for the three-dimensional FDTD calculation using 

anatomically realistic human models because the CPU takes a 

very long time to run a FDTD calculation. We therefore 

compared the run time between multi-GPU cluster system and 

a supercomputer in the case of a plane wave incidence for a 

numerical human model. In this performance test, we used an 

anatomical model of three-year-old child developed by 

Nagaoka et al [11]. Figure 10 shows the results of the 

comparison. Run times in this figure are continuously 

computed times from 30 MHz to 3 GHz (a total of 22 

frequencies). The run times with the two nodes (14 GPUs) of 

GPU cluster system and one node (8 CPUs) of the 

supercomputer were 4354 sec and 6618 sec, respectively. The 

thread block size for the GPU calculation was 32 × 16 in this 

test. Run time on the GPU cluster system was approx. 1.5 

times faster than that using the vector supercomputer. We 

found that multi-GPU cluster system is able to significantly 

accelerate three-dimensional FDTD calculation with positive 

implications for practical application.  

 
Fig. 10. Comparison run time of FDTD calculation  

between multi-GPU cluster and supercomputer 

V. CONCLUSION 

We implemented the three-dimensional FDTD method 

on multi-GPU cluster environment with CUDA and MPI. In 

this study, we used the NVIDIA Tesla C2070 as GPGPU 

boards and examined the performance of the FDTD 

calculation on multi-GPU cluster environment. We confirmed 

that the FDTD calculation on the multi-GPU clusters is faster 

than that on a multi-GPU (a single workstation), and we also 

found that the GPU cluster system calculate faster than a 

vector supercomputer. In addition, our GPU cluster system 

allowed us to perform the large-scale FDTD calculation 

because were able to use GPU memory of over 100 GB. 
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