



Abstract—Electromagnetic simulation with anatomically

realistic computational human model using the finite-difference

time domain (FDTD) method has recently been performed in a

number of fields in biomedical engineering. To improve the

method’s calculation speed and realize large-scale computing

with the computational human model, we adapt

three-dimensional FDTD code to a multi-GPU cluster

environment with Compute Unified Device Architecture and

Message Passing Interface. Our multi-GPU cluster system

consists of three nodes. The seven GPU boards (NVIDIA Tesla

C2070) are mounted on each node. We examined the

performance of the FDTD calculation on multi-GPU cluster

environment. We confirmed that the FDTD calculation on the

multi-GPU clusters is faster than that on a multi-GPU (a single

workstation), and we also found that the GPU cluster system

calculate faster than a vector supercomputer. In addition, our

GPU cluster system allowed us to perform the large-scale FDTD

calculation because were able to use GPU memory of over 100

GB.

I. INTRODUCTION

UMERICAL simulation with computational human

models in anatomy has recently been performed for

studies on medical applications and biological effects [1], [2].

The finite-difference time-domain (FDTD) method [3], one of

the electromagnetic analysis methods, has mainly been used in

these studies using computational human models.

High-performance computer (HPC) systems, such as

supercomputers, were until a few years ago generally needed

to perform the FDTD calculation with computational human

models, because the FDTD calculation runs very slowly and

requires a large amount of computational memory.

Recently, general-purpose computing on a graphics

processing unit (GPGPU) has received considerable attention

in many scientific fields [4]-[6] because a GPGPU offers high

computational performance at low cost. We previously

implemented the three-dimensional FDTD method on a single

GPU using Computer Unified Device Architecture (CUDA)

[7], and also found that three-dimensional FDTD calculation

using a single GPU (NVIDIA Tesla C1060) can significantly

reduce run time compared to when using a conventional CPU

(Intel Xeon X5450) , even with a native GPU implementation

of the three-dimensional FDTD method [8]. However, the

available memory of a single GPU is very small to perform the

three-dimensional FDTD calculation. Therefore, in order to

T. Nagaoka and S. Watanabe are with the Electromagnetic Compatibility

Laboratory, Applied Electromagnetic Research Institute, National Institute

of Information and Communications Technology, Tokyo 184-8795, Japan.

(e-mail: nagaoka@nict.go.jp; wata@nict.go.jp).

improve the calculation speed and the available memory, we

adapt the FDTD code to multi-GPU environments [8].

In this paper, to more efficiently perform the large-scale

FDTD computation with real computational human model, we

attempt to implement the three-dimensional FDTD code on

multi-GPU cluster environment. The approach is adapted to

simulate an electromagnetic field using a human model, and

its performance is evaluated.

II. CONVERTING CPU FDTD CODE TO GPU-CLUSTER CODE

A. Parallel Computation on Multi GPU Cluster

GPU Cluster consists of multiple PCs, which is called

"cluster nodes", connected with high speed network such as

"Infiniband". Each cluster node is equipped with single or

multiple GPU subsystem that is a board with GPU and

dedicated GPU memory. Figure 1 shows a GPU Cluster

system architecture.

Fig. 1. GPU Cluster system

There are multiple level of parallelism in a GPU Cluster

System; inner GPU level, intra GPU level.

Inner GPU parallelism is based on Single Program

Multi Datastream (SPMD) model. A GPU has hundreds of

processors called stream processors (SPs). In SPMD model,

all SPs execute the same program but for different data

elements. It is capable of executing thousands of GPU threads

that CUDA generates, which are bundled into a thread block.

Thread blocks are arranged into a grid [10]. CUDA maps

parallelizable code fragment to these GPU threads.

Intra GPU level parallelism in multi GPU subsystems is

based on distributed memory parallel model. Each GPU is

allowed to access only to the dedicated GPU memory.

Therefore, it is required to divide the computation domain into

subsets that fit to GPU memory and loaded before GPU

computation. GPU-GPU communication and synchronization

control are required for this level parallelism.

Accelerating Three-Dimensional FDTD Calculations on GPU

Clusters for Electromagnetic Field Simulation

Tomoaki Nagaoka, Member, IEEE, and Soichi Watanabe, Member, IEEE

N

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5691978-1-4577-1787-1/12/$26.00 ©2012 IEEE

B. Existing C Code to CUDA Code

In FDTD method, electric and magnetic fields are

discretized with regular grid and allocated as three

dimensional arrays. Field values are updated with

parallelizable for-loop. A typical example of the field update

for-loop shows in Fig.2. (Not actual code) EX is an array for

x-element of electric field. HY and HZ are y and z element of

magnetic fields, respectively. The for-loop is converted to a

pair of CUDA kernel code (lower) and kernel call (upper).

(Fig.3) CUDA generates thousands of GPU threads that

simultaneously execute kernel program on SPs.

for(int k = 0; k < NZ; k ++)

 for(int j = 0; j < NY; j ++)

 for(int i = 0; i < NX; i ++){

 int kji = NX*NY*k+NX*j+i ;

 EX[kji] = c0*EX[kji]

 +c1*(HZ[kji] - HZ[kji-NX])

 -c2*(HY[kji] - HY[kji-NX*NY])

}

Fig. 2. A typical field computation for-loop

// kernel call

exKernel<<< grid, threads >>>(dEX, dHY, AHZ) ;

// CUDA kernel program

__global__ void

exKernel(float* dEX, float* dHY, float* dHZ)

{

 int ii = blockDim.x*blockIdx.x + threadIdx.x ;

 int jj = blockDim.y*blockIdx.y + threadIdx.y ;

 int kk = blockDim.z*blockIdx.z + threadIdx.z ;

 int kji = NX*NY*kk+NX*jj+ii;

 dEX[kji] = c0*dEX[kji]

 +c1*(dHZ[kji]- dHZ[kji-NX])

 -c2*(dHY[kji]- dHY[kji-NX*NY]);

};

Fig. 3. A pair of CUDA kernel program (lower) and kernel call (upper)

All the data used in CUDA kernel is required to transfer

GPU memory before CUDA kernel call. After the

computation is completed, the results may be transferred to

host memory. Process flow of three-dimensional FDTD

program by GPU follows:

1. Initialize GPU

2. Allocate GPU memory and copy initial data to GPU

3. Time step for-loop{

 execute electric field computation on GPU

 execute magnetic field computation on GPU

}

4. Transfer GPU data to host memory

5. Release GPU memory and Finish

C. Implementation of GPU-GPU Communication on GPU

Cluster

As FDTD is based on finite difference schema, GPU

computes an array element by referring adjacent array element.

When a GPU updates an element at the boundary of the

decomposed data array, it is going to refer to the adjacent data

elements that reside another GPU subsystem. GPU does not

access another GPU memory but copies of referenced data

elements are allocated. These reference data elements are not

updated by GPU. Therefore to keep coherency between the

original and copied data elements, the updated values of the

original elements are copied from another GPU memory and

replace the value of copy elements after the original elements

are successfully updated.

Figure 4 shows an example of referenced data update

1D data decomposition (see also Fig.2). k-th GPU computes

up to index "n" of EX (x component of electric field array)

and HY (y component of magnetic field array), and k+1 th

GPU computes greater than index "n" of E and H (elements of

E and H are depicted by green small rectangles). From finite

difference schema of FDTD, k-th GPU computes EX[n], by

referring HY[n], and HY[n+1]. Unfortunately HY[n+1]

resides on (k+1)-th GPU memory where k-th GPU cannot

access directly. Similarly, (k+1)-th GPU computes HY[n+1]

by referring EX[n] and EX[n+1], where EX[n] resides on k-th

GPU memory, where (k+1)-th GPU cannot access to.

These reference data elements are copied on GPU that

requires these elements for computation (depicted in yellow

small rectangles). k-th GPU just refers the copy of HY[n+1]

and does not updates its value. To keep the original HY[n+1]

on (k+1)-th GPU and the copied element on k-th GPU

coherent, the newly updated original value are transferred

from (k+1)-th GPU to k-th GPU .

Fig. 4. Coherency between original and reference copy data

Figure 5 shows synchronization and GPU-GPU

communication flow inside the FDTD time step. Each

rectangle represents a task of computation or control. There

are N cluster nodes, and each cluster node is equipped with M

GPUs. At the end of electric field computation, all the GPUs

with in a cluster node wait for completion of other GPU's

computation. This type of synchronization is achieved by

"barrier synchronization". Within a cluster node, OpenMP

barrier synchronization function is used in combination with

cudaThreadSync. Barrier synchronization among all the

GPUs is implicitly achieved by MPI (Message Passing

Interface) send and receive functionality. At this point, all the

(N*M) GPUs in this cluster complete the electric field

computation, then "GPU-GPU communication" that updates

the reference-copy data elements with transfer the newly

updated original data values starts. At the end of GPU-GPU

communication, all the GPUs waits for data transfer is

completed. After all the GPU-GPU communication is finished,

GPUs start to compute magnetic field with magnetic field

computation. At the end point of magnetic field computation,

synchronization is taken as the end of electric field

computation.

In order to convert the code to GPU cluster,

implementing GPU-GPU communication and

synchronization is required. Within a cluster node, OpenMP

and CUDA function is used to GPU-GPU communication,

5692

whereas communication between cluster nodes is

implemented with MPI.

Field data arrays are decomposed along Z-direction,

which is 1D decomposition. Assume there are N cluster nodes

with M GPUs, and there exists totally M*N GPUs. Each GPU

is identified with the cluster node id, k, and GPU ID in k-th

cluster node. In MPI environment, the cluster node id is

equivalent to MPI rank. Then domain is partitioned into M*N

subsets. We relate (k,l) th GPU to k*M+l th subset of the

domain. Each GPU communicates just two contiguous

indexed GPUs. If GPU ID "l" is neither 0 nor M-1, then GPU

communicates with GPUs within the same rank. In such case,

GPU-GPU communication is achieved by combination of two

cudaMemcpy, DeviceToHost and HostToDevice. If GPU ID

is equal to 0 or M-1, it communicates with GPU resides in

adjacent MPI rank node. In this case, MPI_Send and

MPI_Recv are used in addition to cudaMemcpy.

Fig. 5. GPU Cluster task flow

Figure 6 illustrates GPU-GPU communication in

pseudo code. This code is executed in all OpenMP threads on

all cluster nodes.

// MPI rank = k

#pragma omp barrier

cudaMemcpy(boundarydata,DeviceToHost);

#pragma omp barrier

#pragma omp master

// if GPU id l==0 or M-1

 MPI_Send(boundarydata, rank=k-1,k+1);

 MPI_Recv(boundarydata, rank=k+1,k-1);

#pragma omp barrier

cudaMemcpy(boundarydata,HostToDevice);

#pragma omp barrier

Fig. 6. Pseudo code for GPU-GPU communication

Assume the current thread is related to (k,l)th GPU, that

is l-th OpenMP thread with MPI rank k. The array elements on

the boundary of the decomposed array are copied back to host

memory with cudaMemcpy function. All the GPU wait for

completion of these data transfer by "#omp pragma barrier"

OpenMP barrier synchronization functionality. If this

OpenMP thread id , that is GPU ID, is equal to 0 or M-1, the

boundary data should be send to (k+1) or (k-1) th MPI rank

with MPI_Send function and the boundary data should be

received from MPI rank (k-1) or (k+1). Finally, updated

boundary values are transferred to GPU. MPI_Send and

MPI_Recv are synchronized function that wait for completion

of the process. This means that all GPUs with GPU ID is 0 or

M-1 wait for completion of MPI communication. Therefore,

MPI send-receive pair in combination with OpenMP barrier

functionality realizes barrier synchronization for all GPUs.

III. GPU CLUSTER ENVIRONMENT

Figure 7 shows our multi-GPU cluster system and Table

1 shows the specification of the system. The GPU cluster

system consists of three nodes. The seven GPU boards

(NVIDIA Tesla C2070) are mounted on each node. The each

GPU board has 6 GB GDDR5 RAM. GPU memory of 42 GB

per node is available. Therefore, the memory of 126 GB

(42GB × 3 nodes) is available in the cluster system.

Fig. 7. Multi-GPU cluster system

TABLE I. SPECIFICATIONS

CPU
[Intel Xeon X5677 (3.46 GHz, 12MB) ×

2] × 3 nodes

Main memory
96 GB (DDR3 1066 MHz

Reg.ECC 16 GB × 6) × 3 nodes

GPU [NVIDIA Tesla C2070 × 7] × 3 nodes

CUDA cores (GPU) [448 core × 7] × 3 nodes

GPU memory [6 GB × 7 = 42 GB] × 3 nodes = 126 GB

Memory Interface (GPU) GDDR5 SDRAM 384 bit

Memory Bandwidth (GPU) 144 GB/sec

Internode communication InfiniBand QRD

Operating System Linux (CentOS 5.5)

CUDA version CUDA 4.0

IV. PERFORMANCE TESTS

A. Performance of multi-GPU cluster system

To examine the performance of the FDTD calculation

on multi-GPU cluster system, we conducted a test using the

calculation model shown in Fig. 8. The model was a cube

domain, and its center was allocated a sphere (25 cells in

radius). The incident wave was an assumed plane wave. The

calculation domain was 600 × 600 × 600 cell size.

Figure 9 shows the calculation time of our multi-GPU

cluster system. Computation time is calculated for part of the

electromagnetic field update. The thread block size is 32 × 16.

Calculation speed with two GPUs in one node was

approximately 2.3 times faster than with seven GPUs in the

same node. In the cluster system, the communication times

between cluster nodes that do not occur in one node can

significantly affect the overall time of three-dimensional

5693

FDTD calculation. However, the speeds with three nodes (21

GPUs) were approximately 1.4 times faster than with one

node (7 GPUs).

Fig. 8. Calculation model for performance test

Fig. 9. Computational performance of multi-GPU cluster system

B. Performance test for a specific example using a human

model

We usually use a vector supercomputer SX-8R (NEC)

for the three-dimensional FDTD calculation using

anatomically realistic human models because the CPU takes a

very long time to run a FDTD calculation. We therefore

compared the run time between multi-GPU cluster system and

a supercomputer in the case of a plane wave incidence for a

numerical human model. In this performance test, we used an

anatomical model of three-year-old child developed by

Nagaoka et al [11]. Figure 10 shows the results of the

comparison. Run times in this figure are continuously

computed times from 30 MHz to 3 GHz (a total of 22

frequencies). The run times with the two nodes (14 GPUs) of

GPU cluster system and one node (8 CPUs) of the

supercomputer were 4354 sec and 6618 sec, respectively. The

thread block size for the GPU calculation was 32 × 16 in this

test. Run time on the GPU cluster system was approx. 1.5

times faster than that using the vector supercomputer. We

found that multi-GPU cluster system is able to significantly

accelerate three-dimensional FDTD calculation with positive

implications for practical application.

Fig. 10. Comparison run time of FDTD calculation

between multi-GPU cluster and supercomputer

V. CONCLUSION

We implemented the three-dimensional FDTD method

on multi-GPU cluster environment with CUDA and MPI. In

this study, we used the NVIDIA Tesla C2070 as GPGPU

boards and examined the performance of the FDTD

calculation on multi-GPU cluster environment. We confirmed

that the FDTD calculation on the multi-GPU clusters is faster

than that on a multi-GPU (a single workstation), and we also

found that the GPU cluster system calculate faster than a

vector supercomputer. In addition, our GPU cluster system

allowed us to perform the large-scale FDTD calculation

because were able to use GPU memory of over 100 GB.

ACKNOWLEDGMENT

Parts of this work were carried out using the vector

supercomputer SX-8R (NEC) at the National Institute of

Information and Communications Technology.

REFERENCES

[1] J. Kim and Y. Rahmat-Samii, “Implanted antennas inside a human

body: simulation, designs, and characterizations,” IEEE Trans.

Microwave Theory Tech., vol. 52, pp. 1934-1943, Mar. 2004.

[2] J. W. Hand, “Modeling the interaction of electromagnetic fields

(10MHz-10GHz) with the human body: methods and applications,”

Phys. Med. Biol., vol. 52, pp. R243-286, Jul. 2008.

[3] A. Taflove and S. C. Hagness, Computational Electromagnetics: The

Finite-Difference Time-Domain Method, 3rd ed., London: Artech

House Publishers, 2005.

[4] M. de Greef, J. Crezee, J. C. van Eijk, R. Pool and A. Bel, “Accelerated

ray tracing for radiotherapy dose calculations on a GPU,” Med. Phys.,

vol. 36, pp. 4095-4102, Sep. 2009.

[5] S. S. Samant, J. Xia, P. Muyan-Ozcelik and J. D. Owens, “High

performance computing for deformable image registration: towards a

new paradigm in adaptive radiotherapy,” Med. Phys., vol. 35, pp.

3546-3553, Aug. 2008.

[6] N. Takada, T. Shimobaba, N. Masuda and T. Ito, “High-speed FDTD

simulation algorithm for GPU with compute unified device

architecture,” in Proc. IEEE-APS/URSI Int. Symp., pp. 1-4, 2009.

[7] NVIDIA, NVIDIA CUDA programming guide version 4.0, NVIDIA

Corporation, 2011.

[8] T. Nagaoka and S. Watanabe, “A GPU-based calculation using the

three-dimensional FDTD method for electromagnetic field analysis,” In

Proceedings of IEEE EMBC 2010, pp. 327-330, Buenos Aires, 2010.

[9] T. Nagaoka and S. Watanabe, “Multi-GPU accelerated

three-dimensional FDTD method for electromagnetic simulation,” In

Proceedings of IEEE EMBC 2011, pp. 401-404, Boston, MA, 2011.

[10] P. Micikevicius, “3D finite difference computation on GPUs using

CUDA,” In Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU-2), pp. 79-84,

2009.

[11] T. Nagaoka, E. Kunieda, and S. Watanabe, “Proportion corrected

scaled voxel models for Japanese children and their application to the

numerical dosimetry of specific absorption rate for frequencies from 30

MHz to 3 GHz,” Phys. Med. Biol., vol. 53, pp. 6695-6711, Nov. 2008.

5694

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

