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Abstract²We present a QRS detection algorithm for 

wearable ECG applications using a proportional±derivative 

(PD) control. ECG data of arrhythmia have irregular intervals 

and magnitudes of QRS waves that impede correct QRS 

detection. To resolve the problem, PD control is applied to avoid 

missing a small QRS wave followed from a large QRS wave and 

to avoid falsely detecting noise as QRS waves when an interval 

between two adjacent QRS waves is large (e.g. bradycardia, 

pause, and arioventricular block). ECG data was obtained from 

78 patients with various cardiovascular diseases and tested for 

the performance evaluation of the proposed algorithm. The 

overall sensitivity and positive predictive value were 99.28% and 

99.26%, respectively. The proposed algorithm has low 

computational complexity, so that it can be suitable to apply 

mobile ECG monitoring system in real time. 

I. INTRODUCTION 

Electrocardiogram (ECG) records the temporal profiles of 

the electrical excitation processes in the myocardium in the 

form of waves, peaks, and lines. ECG provides the image of 

the electrical generation and reflects the excitation processes 

in the heart by non-invasive electrodes attached to the body 

surface. The ECG of the patients with cardiovascular disease 

should be monitored over days and weeks for vital function 

analysis and emergency help.  

The advances of current wireless technologies will enhance 

quality of a cardiovascular management service. These 

advances would make a user wear just a lightweight ECG 

sensor including a microprocessor that judges whether 

arrhythmia appears. When arrhythmia appears, the 

microprocessor can be programmed to transmit the ECG data 

via telephone lines to medical experts to interpret it. For the 

successful real-time diagnosis, a highly accurate QRS 

detection algorithm is indispensible.  

The QRS wave determination has been accomplished by 

comparing the magnitude of QRS waves or obtained feature 

values against a threshold. In 1970s, a fixed threshold was 

used [1], and this threshold value should be set according to 

individuals. However, magnitude of the feature in QRS waves 

varies even in individuals (called intra-individual variability 

[2]) due to respiration, motion artifacts, and beat types (e.g. 
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normal a beat or a premature ventricular contraction beat). In 

1980s, a variable threshold was introduced base on magnitude 

of a few previous QRS waves [3]. When a new QRS wave was 

determined, the threshold was updated as a percentage of the 

QRS wave magnitude. The threshold value did not change 

before a new QRS wave appeared. Recently, Iliev et al. 

suggested a constantly decreasing threshold at a fixed rate 

irrespective of QRS wave occurrence [4]. The threshold was 

automatically set high just after a QRS wave appeared, and the 

threshold became low over time. This method indirectly 

reflected a psychological refractory period of the 

cardiovascular system because time duration (approximately 

0.4s~1.2s [5]) exists between two QRS waves.  

We present a new variable threshold method using a 

proportional±derivative (PD) controller [6] that has been 

widely applied in industrial control systems. The proposed 

method was motivated because we found challenging issues 

with developing a QRS detection algorithm for ECG data 

from 78 patients with various cardiovascular diseases. When a 

large premature ventricular contraction beat was detected, a 

high threshold was set due to the large QRS magnitude. When 

a small normal beat followed the large beat, the small one 

could be missed because its magnitude could be less than the 

threshold. A decreasing rate of threshold could be set high to 

detect a small beat following a large beat. The high decreasing 

rate of a threshold could not miss the small beat following a 

large beat, but it could detect small noise peaks as QRS waves 

in a case that a QRS wave did not appear for a long time (> 2s: 

some types of arrhythmia such as atrioventricular block and 

sinus pause). The PD controller helped to resolve the 

aforementioned challenging issues. The controller aimed to 

continuously decrease a threshold over time not at a constant 

rate but at a variable rate proportional to a difference between 

a current threshold value and a target threshold value (a 

predefined value to be converged). In addition, when a QRS 

wave was detected and its magnitude was much larger than the 

current threshold value, the controller avoided an abrupt 

threshold change for a possible case when the following beat 

was small. 

II. MATERIALS AND METHODS 

A. Data Acquisition 

We requested a clinical experiment to Samsung Medical 

Center (Seoul, the Republic of Korea) to acquire ECG data 

from 78 patients with various cardiovascular diseases. All 
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patients have signed the informed consent form under an 

Institutional Review Board (IRB) protocol for this study. A 

self-developed wearable ECG sensor with a built-in amplifier 

(x100) was attached to each patient, and the sensor consisted 

of three electrode nodes for biopotential measurement and a 

Bluetooth module for wirelessly sending ECG data. The 

patient also wore a data logger including a Bluetooth module 

to save 24hrs ECG data from the sensor. All patients were not 

hospitalized, but did daily activities without any restrictions. 

The sampling frequency of ECG data was 250 Hz. Medical 

experts picked some 7-8s samples including various types of 

arrhythmia among the 24hrs ECG data for each subjects, and 

they annotated QRS waves and a type of arrhythmia. 

 

 
Fig.  1. Algorithm structures. 

 

B. Preprocessing 

Fig.  1 shows a flowchart of the proposed algorithm. We 

first applied a finite impulse response (FIR) band-pass filter 

using Hamming window to reduce high-frequency noise. The 

filter order was the 41
th

, and the high and low cut-off 

frequencies was 10 and 25Hz taking into account the 

frequency bandwidth of QRS waves [7]. The QRS wave is a 

steep spike indicating the signal has reached the 

atrioventricular node and the ventricles are about to contract. 

To catch the steep spike, a differentiation formula is 

implemented as follows: 
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p[n] is a low-pass filtered data at the time n, and d[n] is the 

differential value at the time n. Then, a mean absolute value is 

obtained to get average effects of differentiation values 

surrounding R-peaks as follows: 
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C. QRS Candidate Selection 

An analysis window is used to efficiently select QRS 

candidates considering a psychological refractory period of 

the cardiovascular system. It has been well known that it is 

difficult to appear a QRS wave in 240 ms after a QRS wave 

appears. The length of the analysis window is set as 240 ms 

(60 samples in our sampling frequency 250 Hz).  

Among the 60 samples of low-pass filtered data, our 

algorithm searches local minimum/maximum peaks that could 

be QRS candidates using following criteria: 
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j is a local index of the detected QRS wave location in an 

analysis window. Since the length of the analysis window is 60, 

j = 1, 2, ..., 60. Among the peaks satisfied with the criteria (3), 

the algorithm selects the QRS candidate wave that has the 

maximum mean absolute value.  

 

D. Threshold Adjustment 

 

 
Fig.  2. The threshold adjustment rule by PD control. TH[w] was a threshold 

magnitude in the w-th analysis window. �p and �d were a proportional gain 

and a derivative gain, respectively. THmin was the predefined minimum value 

of threshold. 

 

Mean absolute value of the selected QRS candidate wave is 

compared to a threshold, and the threshold is not fixed but 

variable. Fig.  2 shows the threshold adjustment by PD 

control; w is an index of an analysis window, and TH[w] is a 

threshold at the w-th window. The PD control is performed at 

every 60 samples (240 ms = the length of the analysis window 

used in this method). The minimum value of threshold is 

defined, and the threshold tries to converge to the defined 

minimum value. This update rule consists of three terms: a 

previous threshold term, a threshold decrease term, and a 

threshold change resistance term.  

 

 
Fig.  3. The effects of a threshold decrease term. 

 

The role of the threshold decrease term in Fig.  2 is 

described in Fig.  3. CASE I described a moment when a 

previous threshold is located far from the minimum threshold. 

In this case, a threshold decrease term can be large because the 

large difference between a previous threshold and the 

minimum threshold. This large decrease of the threshold helps 
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to detect a QRS wave following a large QRS wave. CASE III 

describes when a previous threshold is located close to the 

minimum threshold. In this case, a threshold decrease term 

can be small because of the large difference between a 

previous threshold and the minimum threshold. This small 

decrease of the threshold helps to avoid small noise peaks 

although a QRS wave does not appear for a long time. 

The role of the threshold change resistance term in Fig.  2 is 

to avoid an abrupt threshold change for a possible case when 

the following QRS wave is small. Some examples are 

described in Fig.  4. CASE I and II described a moment when 

any QRS waves are not detected. The threshold is decreased 

by the threshold decrease term. In CASE I, when the 

difference of the thresholds at between w-1 and w-2 is large, 

the threshold change resistance teUP� ��d > 0) reduces the 

decreasing amount of the threshold that is originally supposed 

to be done without it ��d = 0). In CASE II, when the difference 

of the thresholds at between w-1 and w-2 is small, effects of 

the threshold change resistance term becomes also small. 

CASE III and IV describe a moment when a QRS wave is 

detected. When a QRS wave appears at w-1, the threshold at 

w-1 is changed to the magnitude of the features at the location 

of the detected QRS wave. CASE III describes that a large 

QRS wave is detected at w-1 and the high threshold at w-1 is 

set. However, the large threshold may miss the next small 

QRS wave. Therefore, the threshold change resistance term 

��d > 0) reduces abruptly increasing amount of the threshold 

that is originally supposed to be done without it ��d = 0). When 

a small QRS wave appears in CASE IV, since the difference of 

the thresholds at between w-1 and w-2 is small, effects of the 

threshold change resistance term becomes also small. We 

defined �p, �d, and THmin as 0.5, 0.1, 0.02 by trial and error. 

 

 
Fig.  4. The effects of a threshold change resistance term. 

 

The PD control is performed not every sample but every 60 

samples considering computational complexity as an 

important factor for a wearable application. The PD control 

has two multiplicative operations, and if we apply the PD 

control at every single samples, 500 multiplicative operations 

would be performed per second (fs = 250 Hz). The 

computational load is reduced when the PD control is 

performed at every 60 samples such that only 8.33 

multiplicative operations per second are required. 

In the analysis window, the threshold is decreased by a 

linear interpolation using the current threshold and the 

estimated next threshold as shown in Fig.  5. The next 

threshold is estimated as follows: 
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The interpolation was performed as follows: 

 

  (5) 

 

K is the number of samples in an analysis window, and k is a 

representative QRS candidate selected in C. QRS Candidate 

Selection. k is a local index of the detected QRS wave location 

in the w-th analysis window. In our method, K = 60, so that k = 

1, 2, ..., 60.  

 

 
Fig.  5. Illustration of the threshold update. n is a integer representing a 

sample number, and w is a integer representing an index of an analysis 

window. n increases at every 4 ms, and w increases at every 60 ms.  

 

E. QRS Determination 

When a mean absolute value of the selected QRS candidate 

wave is greater than the threshold calculated from (5), the 

selected QRS candidate wave is finally determined as a QRS 

wave. Otherwise, it is regarded as noise. The determined QRS 

wave is solely selected in a 240ms analysis window, but an 

interval between adjacent two determined QRS waves could 

be less than 240ms if another QRS wave is selected in the next 

analysis window. When the interval is less than 240ms, the 

mean absolute values of the corresponding QRS waves are 

compared. The bigger one is determined as a QRS wave, and 

the smaller one is regarded as noise.  
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III. RESULTS AND DISCUSSION 

Fig.  6 shows ECG data from a patient with pause 

arrhythmia (3.8s between two QRS waves). The PD controller 

makes a threshold converge to the predefined minimum 

threshold value, so that the threshold cannot reach to the mean 

absolute value of noise peaks. This is effective to avoid falsely 

detected QRS waves when an interval between adjacent two 

determined QRS waves is large (e.g. bradycardia, pause, and 

arioventricular block). 

 

 
Fig.  6. (a) Raw ECG data from a patient with pause arrhythmia and (b) mean 

absolute value data. Red circles in (a) represents detected R-peaks and a blue 

dot line in (b) represents a threshold. 

 

 
Fig.  7. (a) Raw ECG data from a patient with premature ventricular 

contraction beats and (b) mean absolute value data. Red circles in (a) 

represents detected R-peaks and a blue dot line in (b) represents a threshold. 

 

Fig.  7 shows ECG data from a patient with several 

premature ventricular contraction beats. The magnitude of 

premature ventricular contraction beats is much larger than 

those of normal beats. Although the PD controller impedes 

abruptly big increasing change of a threshold when a large 

feature value appears, it rapidly decreases when a threshold is 

large relative to the predefined minimum threshold value. This 

is effective not to miss detecting a small QRS wave following 

a large QRS wave. 

We evaluated the performance of the developed algorithm 

using TP (true positive), FP (false positive), FN (false 

negative), SE (sensitivity), PPV (positive predictive value), 

and FPH (positive per hour) [8]. The overall number of beat 

annotation is 13033 where the global obtained results are as 

follows: the TP is 12939, the FP is 96, and the FN is 94. 

Therefore, our algorithm reports a sensitivity of 99.28% and a 

positive predictive value of 99.26%. The FPH is 3.22, so that 

our algorithm may falsely detect approximately three beats per 

hour.  

IV. CONCLUDING REMARKS 

We developed a QRS detection algorithm using PD control, 

and evaluated its performance using clinical ECG data from 

78 patients who suffered from with cardiovascular diseases. 

Our algorithm was aimed to correctly detect QRS waves in 

arrhythmia regardless of intervals and magnitudes of QRS 

waves. We should notice that computational complexity of 

our algorithm is not heavy compared to literatures using 

wavelet transform [9] and Hilbert transform [10]. The low 

computational complexity is an important factor for 

successful development of a wearable sensor. Our algorithm 

can be extended to other applications such as obstructive sleep 

apnea syndrome [11].  
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