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Abstract—The majority of extreme preterm infants require 
endotracheal intubation and mechanical ventilation (ETT-MV) 
during the first days of life to survive.  Unfortunately this 
therapy is associated with adverse clinical outcomes and 
consequently, it is desirable to remove ETT-MV as quickly as 
possible.  However, about 25% of extubated infants will fail 
and require re-intubation which is also associated with a 5-fold 
increase in mortality and a longer stay in the intensive care 
unit. Therefore, the ultimate goal is to determine the optimal 
time for extubation that will minimize the duration of MV and 
maximize the chances of success. This paper presents a new 
objective predictor to assist clinicians in making this decision. 
The predictor uses a modern machine learning method 
(Support Vector Machines) to determine the combination of 
measures of cardiorespiratory variability, computed 
automatically, that best predicts extubation readiness. Our 
results demonstrate that this predictor accurately classified 
infants who would fail extubation. 

I. INTRODUCTION 

At birth, extreme preterm infants (≤28 weeks) have 
inconsistent respiratory drive, airway instability, surfactant 
deficiency, and immature lungs that frequently result in 
respiratory failure. Management of these infants is difficult 
and most of them will require endotracheal intubation and 
mechanical ventilation (ETT-MV) within the first days of 
life [1]. ETT-MV is an invasive therapy that is associated 
with adverse clinical outcomes including bronchopulmonary 
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dysplasia, pneumonia, neurodevelopment problems, and 
increased mortality. In neonates prolonged invasive 
ventilation increases the incidence of neurodevelopment 
problems by a factor of 1.94 per 4 weeks of ventilation [1]. 
Consequently, clinicians try to remove ETT-MV as quickly 
as possible.  However, as many as 25% of mechanically 
ventilated infants weighing <1250 g at birth need to be re-
intubated following extubation[2]. Failure of extubation, 
defined as need for re-intubation within 72 hours after 
extubation, has been associated with higher death rate, 
increased length of hospital stay, and prolonged ventilation 
in both adult and pediatric populations [3]. Therefore 
physicians must determine the optimal timing for extubation 
which will minimize the duration of MV and maximize the 
chances of success. A variety of objective measures have 
been proposed to assist with this decision but none have 
proven to be clinically useful. 

Recently, we explored the predictive power of indices of the 
variability of heart rate (HR) and respiratory (RV). In a 
retrospective study, we first showed that the combination of 
RV measurements with the results of a spontaneous 
breathing test (SBT), where ventilator support was 
temporarily removed by switching it to ETT continuous 
positive airway pressure (CPAP), had excellent positive 
predictive value (PPV=95%) and sensitivity (100%) [4]. In a 
subsequent prospective study of 56 preterm infants, heart 
rate variability (HRV) was computed from ECG and RV 
from the manual analysis of non-invasive respiratory 
measurements made using respiratory inductive 
plethysmography (RIP). Both HRV and RV were 
significantly lower in infants who failed extubation, 
providing a strong PPV and sensitivity but low specificity 
[5, 6]. A further analysis using more sophisticated, 
automated, algorithms to analyze the RIP data detected 
significant differences between indices of RV in infants who 
failed and those who were successfully extubated [7].  

These results suggest that cardio-respiratory signals contain 
information that might be used to predict when extubation 
will be successful. However, the most effective way to 
extract this information remains to be determined. This study 
explores the utility of using machine learning methods to 
combine automatically determined features of HRV and RV 
to predict the success of extubation.  

The paper is organized as follows: Section II describes the 
patient population and data acquisition. Section III describes 
the signal analysis methods used to define features. Section 
IV describes the machine learning methods used to develop 
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the optimal predictor. Section V reports the performance 
results. Section VI provides concluding remarks.  

II. METHODS 

This paper presents the results of a new analysis of data 
originally reported in [5, 6].  

A. Study Population 

All infants admitted to the Neonatal Intensive Care Unit 
(NICU) of the Royal Victoria Hospital (Montreal, Canada), 
Jewish General Hospital (Montreal, Canada), Montreal 
Children’s Hospital (Montreal, Canada) and Detroit Medical 
Centre (Detroit, USA) with a birth weight ≤ 1250g and 
requiring MV were eligible for inclusion. The research 
ethics committee of each institution approved the study and 
written informed consent was obtained from parents. 

The decision to extubate was made by the most responsible 
physician according to the following guidelines: 1) infants 
below 1000g were extubated with a mean airway pressure 
(MAP) ≤ 7 cmH2O and FiO2 ≤ 0.3 and 2) infants ≥ 1000g 
were extubated with a MAP ≤ 8 cmH2O and FiO2 ≤ 0.3. All 
infants were examined at the time of their first extubation 
from MV. Infants were excluded if they had any major 
congenital anomalies, congenital heart disease, cardiac 
arrhythmias, been administered vasopressor or sedative 
drugs at the time of extubation or were being extubated 
directly from high frequency oscillatory ventilation.  

Post-extubation management involved the application of 
nasal CPAP or nasal intermittent positive pressure 
ventilation (NIPPV) using either bi-nasal prongs or a single 
nasopharyngeal tube. Infants were re-intubated if they met at 
least one of the following four criteria: 1) FiO2 > 0.5 in order 
to maintain SpO2 > 88% or partial pressure of oxygen 
(PaO2) > 45 mmHg, 2) partial pressure of carbon dioxide 
(PaCO2) > 55-60 mmHg with a pH < 7.25, 3) apnea 
requiring positive pressure ventilation with bag and mask or 
4) significant evidence of increased respiratory distress 
including frequent retractions, grunting and chest wall 
distortion. Extubation failure was defined as the need for re-
intubation within seventy-two hours of initial disconnection 
from ETT-MV. 

The extubation and post-extubation management settings 
were not fixed; they were determined by each infant’s 
attending physician. However, an analysis of the success and 
failure groups failed to detect any differences between the 
groups with respect to the mode of ventilation (SIMC or 
AC), ventilatory settings (PIP, PEEP, Rate, FiO2), blood 
gases (SpO2, PCO2, HCO3 or BE) or the use of caffeine 
prior to extubation Nor, were there any differences in the 
mode of respiratory support provided after extubation  

Data was acquired from 56 infants; 44 successfully 
extubated and 12 required re-intubation. Both groups had 
similar population characteristics, ventilator settings and 
blood gases prior to extubation. 

B. Data Acquisition 

Data were recorded during two phases immediately prior to 

extubation. Phase I comprised sixty minutes during which 
the infant was receiving ETT-MV. Phase II comprised a 
subsequent spontaneous breathing test (SBT) lasting for 
three minutes after the mode of ventilation was switched to 
ETT-CPAP. SBT trials in preterm infants must be kept short 
given the risks of atelectasis and lung collapse when the 
infant is breathing through a high resistance tube with no 
support. Previous studies have demonstrated a three minute 
interval to be safe. Patients remained supine throughout the 
recording.  

ECG data was acquired from three leads placed on the 
infant’s chest or limbs for heart rate detection and 
monitoring. Respiratory movements were measured with 
RIP (Respitrace, Vyasis, Yorba Linda,) using two respiband 
transducers. One respiband was placed around the infant’s 
chest at the level of the nipple line to measure rib cage (RC) 
movements. The other respiband was placed around the 
infant’s abdomen, half a centimeter above the umbilicus to 
measure abdominal (AB) movements.  

C. Signal processing 

The RIP and ECG signals were sampled at 1kHz but for 
analysis were decimated to 50Hz, the sampling rate for 
which our respiratory signal analysis algorithms were tuned 
and validated. The RIP and ECG were analyzed 
continuously starting at Phase I until the end of Phase II as 
follows. 

D. Respiratory Signal Analysis 

The respiratory pattern from the RIP signals was analyzed 
with AUREA [8], a novel system for Automated 
Unsupervised Respiratory Event Analysis that requires no 
human intervention. It characterizes respiratory activity in 
terms of a series of metrics that extract the amplitude, 
frequency and thoraco-abdominal asynchrony information 
from the RIP on a sample-by-sample basis as described in 
[8, 9]. These metrics provide reliable, quantitative measures 
of respiratory activity. They include: 

Instantaneous respiratory frequency (fmax): defined as the 
frequency in the 0 – 2 Hz band with the most power. Values 
of fmax in the 0.4 – 2.0 Hz band correspond to the respiratory 
rate, while lower values are observed during movement 
artifacts. This is estimated by passing the RIP signals 
through a bank of band-pass filters with a bandwidth of 0.2 
Hz; fmax is defined as the central frequency of the filter with 
the highest output power at each time. This yields an 
estimate accurate to within 0.1 Hz. 

RMS metric (r+): quantified the absolute amplitude 
information of the RIP signals; it is defined as sum of the 
root mean square values of RC and AB. 

Movement Artifact metrics (mrc and mab): compare the power 
in the movement artifact band (i.e., 0 – 0.4 Hz) to that in the 
regular breathing band. The metric for RC (mrc) is calculated 
using the outputs of the filter bank described above as 
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where the sets I and J define the filter numbers that span the 
breathing and movement artifact bands respectively, i

rc is 
the power of rci, the output of the ith filter in either I or J, 
computed over a window of length NM. The metric (mab) for 
AB is defined similarly. This metric is close to 1 during 
regular breathing and shifts towards -1 during movement 
artifacts. 

Thoraco-Abdominal Asynchrony () metric: estimates the 
phase between RC and AB using selectively filtered RIP 
signals to improve the signal-to-noise ratio. The filtered 
signals are converted to binary signals and the exclusive-OR 
(XOR) is computed between them at each sample. The 
asynchrony metric is the average of this binary signal over a 
window of length NA, and is proportional to the phase shift 

Pause metrics (prc and pab): provide measures of the RIP 
power in the regular breathing band (0–2.0 Hz [9]) relative 
to that expected for normal breathing. The pause metric for 
RC  (prc) is defined by 
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where B
rc is the power over a window of length NP << NQ 

of the RC signal band-pass filtered on the regular breathing 
band, and NQ is the length of the window used to estimate 
the median regular breathing power at each time. This metric 
is close to 1 during regular breathing and lower during 
pauses. The pause metric for AB (pab) is defined analogously 

E. Cardiac Signal Analysis 

The ECG signal was analyzed with the short-time Fourier 
transform (STFT) to obtain a time-varying representation of 
the frequency content. The instantaneous heart rate (hmax) 
was determined at each sample as the frequency with the 
greatest power in the 1.5 – 3.5 Hz band (i.e. 90 – 210 beats 
per minute). The STFT has a fixed relation between its 
window length and frequency resolution; long windows give 
higher frequency resolution but slower tracking; short 
windows give less frequency resolution faster tracking. We 
set the frequency resolution to 0.01 Hz, with a STFT 
window length N of 100 s. To obtain sample-by-sample 
estimates of HR, it was necessary to compute the STFT 
overlapping by N-1 samples. To improve computational 
efficiency, we decimated the ECG signal to 10 Hz prior to 
STFT computation, and the result was interpolated back with 
cubic splines to obtain the HR signal. 

F. Instantaneous Power Estimates 

The instantaneous power estimate of all metrics described 
above was also computed. To this end, each of the 
continuous metrics was squared and averaged over a 
symmetric, two-sided window of length Nma. The correlation 
between the respiratory and heart rates (CRH) was estimated 
by averaging the product fmax*hmax over the same window. 
Short and long term estimates were obtained by setting Nma 
to 1 and 5 min. respectively. 

III. MACHINE LEARNING APPROACH 

A. Features 

The following features generated by the signal processing 
step were used for classification: 

1. The seven features produced by AUREA (fmax, m
rc, 

mab , r+ ,prc, pab,), during the second minute of he 
Phase II recording, the SBT trial. 

2. The power and variability of the respiratory 
frequency estimate (fmax), estimated from: (i) the 
second minute of the Phase II recording, and (ii) 
from minutes 40-45 of Phase I. 

3. The average heart rate (hmax)  and its inter-quartile 
range measured over (i) the second minute of Phase 
II  and (ii) the last 20 minutes of Phase I. 

4. The power of the correlation between the heart rate 
and respiratory frequency CRH,, measured as above. 

B. Classification Tools 

For classification, we used Support Vector Machines 
(SVMs), a state-of-art classification algorithm.  SVMs build 
a decision boundary between classes based on a batch of 
instances, so as to maximize the distance between the 
boundary and these instances.  This makes the algorithm 
robust to noise.  We used Gaussian kernels, which allow for 
a non-linear decision boundary.  We used a publically 
available Matlab package for SVM learning [10]. SVMs 
allow controlling the trade-off between generalization and 
the classification of the training data using a parameter C, 
which specifies a tolerance threshold for examples to be 
misclassified. Based on small preliminary tests, we set this 
parameter to 10, and varied the width of the Gaussian kernel, 
W. We note that W and C have opposite effects, and many 
pairs of values yield similar results  

For comparison, we also classified the data using logistic 
regression using all the features as inputs.  The classifier 
provides a probability for belonging to the class of interest.  
The probability threshold on the failure class was varied to 
obtain the ROC curve 

C. Classification Methods 

There were 3,000 samples of the AUREA features for each 
baby. For each sample, we generated a separate instance for 
training the classifier. We used binary classification, with 
the classes corresponding to success or failure in the 
extubation. During testing, we evaluated performance per 
baby rather than per instance, as is usual in machine 
learning, this type of evaluation is more meaningful for the 
application. A baby was classified as belonging to a class if 
more than half of the instances generated for that baby were 
in that class. Although ties are possible in theory, they never 
occurred in the data 

To assess the performance of the machine learning approach, 
we performed five-fold cross-validation, splitting the data 
into 5 subsets. The data for each baby belonged to exactly 
one subset.  We repeatedly picked a subset on which to test, 
and trained the classifier on the remaining data. Thus, data 
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from the same baby was never used in both training and 
testing 

IV. EMPIRICAL RESULTS 

Data from two babies who succeeded extubation and one 
who failed were excluded because of missing data segments. 
The remaining data set had 42 babies who succeeded 
extubation and 11 who failed. 

Fig. 1 presents an ROC curve obtained by varying W, the 
width of the Gaussian kernel in the SVM algorithm while 
holding the value of the C parameter constant at 10. The 
ROC curve for a logistic regression fit (using the same folds) 
is included for comparison. The SVM results were 
significantly better demonstrating that the non-linear 
decision boundaries allowed by SVM improved the 
classification performance.  

 

Table I presents the accuracy obtained during training and 
testing, broken down by class, for the optimal value of W, 
shown in Figure 1. These results correspond to the point 
from the ROC curve with the best trade-off between 
sensitivity and specificity.  

TABLE I.  ACCURACY OF IDENTIFICATION 

 Failure class Success class

Training Accuracy 85.4% 89.7% 

Testing Accuracy 83.2% 73.6% 

The high accuracy within the failure class demonstrates that 
babies who will fail extubation can be identified with high 
precision.  However, the lower accuracy within the success 
class indicates that the number of false positives is still 
somewhat high. This means that babies that actually 
succeeded were sometimes mistakenly predicted to fail.  

The difference between the training and testing accuracy 
within the success class should also be noted since this 
suggests that there may be a problem with over-fitting. More 

work is needed to eliminate features which are not truly 
predictive. 

V. CONCLUSIONS & DISCUSSION 

The accuracy with which the Failure Class subjects were 
classified is very encouraging. Note that all of the infants in 
the study had been judged to be ready for extubation on the 
basis of the best currently available clinical judgments. This 
suggests that the addition of our classification results to 
current clinical measures would make it possible to reduce 
the extubation failure rate by more than 80%, that is from 
the current 25% to 5%.  

On the other hand, the accuracy of classification within the 
Success Class, would also result in a delay of extubation of 
some infants who might otherwise have been successfully 
extubated. The question of whether this trade off  is 
acceptable depends on the relative clinical cost,  measured in 
terms of health outcome and health care dollars, of 
extubation failure versus delayed extubation.  It should be 
noted that it is possible to take the relative costs into account 
when selecting the best trade off between sensitivity and 
selectivity. How to do this is a difficult clinical question that 
is beyond the scope of the present paper  
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Figure 1: ROC Curves for Classification Using SVM and Logistic 

Regression. 
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