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Abstract— In this paper, a Compressed Sensing (CS) based 

spectral analysis of Heart Rate Variability (HRV) using the 

Integral Pulse Frequency Modulation (IPFM) model is 

introduced. Previous research in literature indicated that the 

IPFM model is considered as a functional description of the 

cardiac pacemaker and thus is very useful in modeling the 

mechanism by which the Autonomic Nervous System (ANS) 

modulates the Heart Rate (HR). On the other hand, in recent 

years CS has attracted great attention over many aspects of 

signal processing applications. According to the IPFM model, we 

here present a CS-based algorithm for deriving the amplitude 

spectrum of the modulating signal for HRV assessments. In fact, 

the application of the CS method into HRV spectral estimation is 

novel and unprecedented in HRV analysis. Numerical 

experimental results demonstrated that the proposed approach 

can robustly yield accurate HRV spectral estimates, even under 

the situation of a degree of incompleteness in the interbeat 

interval or RR data caused by ectopic or missing beats. 

I. INTRODUCTION 

Previous studies in literature have reported that Heart Rate 

Variability (HRV) analysis provides an insight into the 

mechanism of Autonomic Nervous System (ANS) activity [1]. 

In clinical situation, the analysis results of HRV may be also 

used for evaluating the condition of the patient’s heart. In 

general, there are a number of different methods developed 

based on time and frequency domain for quantifying the 

variability in HR, including the calculation of the standard 

deviation of interbeat intervals and/or the power spectral 

analysis of the HR fluctuations. In these applications, the 

beat-to-beat variations are quantitatively captured simply by 

processing the interbeat interval sequence which is directly, 

noninvasively derived from the Electrocardiogram (ECG) 

data. On the other hand, since the HRV reflects the 

information of the underlying ANS control activities, in 

contrast to the direct beat-to-beat interval analysis we may 

also obtain the information related to ANS control that is not 

directly measurable simply using a modeling analysis. In this 

aspect, a model referred to as the Integral Pulse Frequency 

Modulation (IPFM) has been extensively discussed in 

previous research in literature [2]-[5]. Although the IPFM 

model has been well applied for the generation and validation 

of HRV spectra, theoretical derivation of a robust spectral 

analysis of IPFM-based HRV has not been completely and 

well developed. 
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In recent years, Compressed Sensing or Compressive 

Sensing (CS) has been considered one of the ‘booming’ topics 

in signal processing [6, 7]. It is a new data acquisition scheme 

that allows one to perfectly reconstruct a sparse or a 

compressible signal. In biomedical signal/image processing, 

CS has been applied to a variety of topics [8, 9], but there still 

remains a lack in its applications into HRV or the related 

analysis. The contribution of this work is that we successfully 

apply CS framework to an IPFM model-based HRV spectral 

analysis and break the bottleneck caused by the loss or 

incorrectness of RR intervals due to the ectopic beats or the 

misclassification of QRS complexes. Numerical experimental 

results produced in our study showed that the proposed 

method can achieve accurate HRV spectral estimation with a 

degree of robustness.  

II. MATERIALS AND METHODS 

A. A Model Used for the Generation of HR signals –Integral 

Pulse Frequency Modulation (IPFM) Model 

IPFM model has been widely used to generate pulses from 
modulating signals. It provides a functional description of the 
mechanism by which the ANS modulates HR [3]. Suppose 
there are L of RR intervals, denoted as RRi = ti−ti−1, where ti is 
the occurrence time of the ith interval, i = 1, …, L and t0 = 0. 
IPFM model suggests a linear relation among ti, modulating 
signal m(t) and an IPFM threshold TR: 
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Inspired by the discrete Fourier transform (DFT), we 
assume  

        

   



K

k

k tmtm
1

,         (2) 

and 
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where ωk = 2πk/T, T is the period of m(t) while ak and bk are 
real coefficients of cosine wave and sine wave at frequency 
ωk, respectively. As a result, (1) becomes 
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In the context of DFT, the period of m(t) is equal to the 
available length of m(t), i.e., T = tL. Thus, when i = L we can 
compute  

Compressed Sensing for Integral Pulse Frequency Modulation 

(IPFM)-based Heart Rate Variability Spectral Estimation 

Szi-Wen Chen, Member, IEEE, and Shih-Chieh Chao 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5626978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

        




L

i

i
L RR

LL

t
TR

1

1 .       (5) 

Therefore, ti, T and TR can be easily computed, and there 
are still L−1 equations in (4) left, which can be compactly 
written into the matrix form: y=Ax, where 
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According to the dimension of A, the linear system can be 
classified as overdetermined, squared and underdetermined, 
i.e., 
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Obviously, IPFM-based HRV spectra can be estimated by 
solving the linear system as indicated in (9). Previous studies 
in literature [4, 5] have developed methods for estimating 
IPFM-based HRV spectra in overdetermined and squared 
cases. In this study, we showed that IPFM-based HRV spectra 
can be also estimated in underdetermined case by taking 
advantage of compressed sensing, of which backgrounds and 
methodology are presented in the next section. 

B. Compressed Sensing (CS) Method 

Compressed sensing has been shown to be able to estimate 
sparse or compressible signals from incomplete measurements 
[6, 7]. Consider a signal x in R

N
. x is sparse if most elements of 

x are zero. Similarly, x is compressible if most elements of x 
are near zero. Specifically, x is S-sparse if  ||x||0 ≤ S , where S is 
a positive integer and ||·||p is the ℓp-norm operator defined as 
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where p is non-negative integers. Let us further define the set 
of S-sparse vectors:  
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Then, a vector x' in R
N
 can be approximated by a vector x in 

ΣS, and the approximation error of x' in ℓp-norm, σS(x')p, is  
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where inf(·) is the infimum operator. If σS(x')p is small enough 
for S, then x' is S-compressible. Regarding the sampling 
scheme of CS, unlike the uniform sampling of the 

Nyquist/Shannon theory, CS employs a linear measurement 
model, that is,  

         xy  ,          (13) 

where y in R
M

 is the measurement vector, and Φ in R
M×N

 is the 
measurement matrix. The interest of CS is that M << N, which 
is considered an underdetermined linear system implying that 
there are infinite solutions, but keep in mind that x is sparse. 
By taking advantage of the sparsity of x, one can utilize 
ℓ1-minimization to find some optimal solutions of the 
underdetermined system. The ℓ1-minimization is defined as  
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x
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In reality, noise is always present, so the following equivalent 
minimization is more practical: 
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where τ is a nonnegative parameter. Note that here the 
Gradient Projection for Sparse Reconstruction (GPSR) 
algorithm is employed to solve for x in (15). In general, GPSR 
is an iterative gradient projection algorithm and was 
developed by Figueiredo et al. [10]. Depending on the line 
search method, there are two versions of GPSR: 1) 
GPSR-Basic employing the quasi-Newton line search method, 
and 2) GPSR-BB employing the Barzilai-Borwein line search 
method. In this study, we adopted GPSR-BB since it may 
achieve a faster rate of convergence. 

C. CS-based HRV Spectral Estimation 

From (9) and (13), it is obvious that if we let Φ = A, then 

the IPFM-based spectral model can be simply fit by the linear 

measurement model of CS. The only concern is whether the 

frequency components ak and bk can be represented as a sparse 

or a compressible signal. We believe that ak and bk can be 

represented as a compressible signal since major 

characteristics of a standard HRV spectrum are determined by 

the amplitudes of three main lobes only (two are located at the 

frequency < 0.15 Hz; while one is at that > 0.15 Hz), and the 

side lobes can be ignored. So, for the IPFM-based HRV 

spectral estimation we may take the advantage of using the CS 

framework to deal with the underdetermined cases. The novel 

method is able to combat the loss or incorrectness of RR 

intervals. Our results presented in the subsequent section 

further demonstrated the robustness of the proposed method. 

III. RESULTS AND DISCUSSION 

To show the ability of GPSR-BB in estimating the IPFM 
based HRV spectra under the CS framework, first we let 
K=(L−1)/2 such that data loss rate R = 0 (i.e., a complete RR 
set is used) and A is a squared matrix, where R is defined as 

        data  totalof #

datalost  of #
R .      (16) 

Then, we tested this setting on a number of simulated RR 
intervals generated by the IPFM model and on practical RR 
intervals derived from a healthy subject to see if the HRV 
spectra reflect the characteristics as we expected. 
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We first generated a set of simulated RR intervals using 
exactly the same settings in [4], briefly summarized below: 

1) TR = 1.05 s 

2) m(t) = m1cos(2πf1t)+ m2cos(2πf2t)+ m3cos(2πf3t) with m1 = 
0.12, m2 = 0.12, m3 = 0.08, f1 = 0.02 Hz, f2 = 0.09 Hz and f3 
= 0.21 Hz. 

3) L = 381 

4) T = 400 s 

Fig. 1(a) shows the HRV spectrum derived from the complete 
set of simulated RR intervals by the proposed method. One 
may see that there are significant frequency components at 
0.02 Hz, 0.09 Hz and 0.21 Hz with magnitude almost equal to 
0.12, 0.12 and 0.08, respectively. Although there are tiny 
components at other frequencies, the magnitudes are small 
enough (usually on the order of 10

-6
 or less) to be ignored. The 

mean squared error (MSE) between the estimated spectrum 
and the true spectrum is 1.97568e-008. Next, to further 
demonstrate the power of CS in estimating HRV spectra from 
the incomplete set of RR intervals, we shortened the simulated 
RR time series by removing the RR intervals randomly with R 
= 0.9 and then compared the spectra derived from incomplete 
RR intervals with those derived from the complete RR interval 
dataset previously. As a result, the HRV spectrum estimated 
from the incomplete RR intervals is as depicted in Fig. 1(b). In 
fact, Figs. 1(a) and (b) are visually identical, even the latter is 

obtained from only 10% of the simulated RR intervals (i.e., R 
= 0.9). The MSE between the spectrum derived from the 
incomplete simulated RR intervals and the true spectrum is 
3.96636e-007, which is still considerably small. 

In addition, in our study we also used the RR intervals 
practically measured from a healthy normal subject to 
demonstrate the proposed method. The HRV spectrum 
derived from the complete set of RR intervals is as shown in 
Fig. 2(a). It is obvious that Fig. 2(a) reveals the characteristics 
of the standard HRV spectrum of a normal subject, i.e., there 
are major components seen in a Lower Frequency (LF) band 
[0.04, 0.15] Hz and a Higher Frequency (HF) band [0.15, 
0.40] Hz, which correspond to the sympathetic and vagal 
activities, respectively. Hence, from Fig. 2(a), the proposed 
method is shown to be able to achieve HRV spectral estimates 
from real RR interval data. Similarly, we also estimated the 
HRV spectrum using the incomplete RR dataset simply by 
removing 10% of the real RR intervals (i.e., R = 0.1) in a 
random order. Consequently, the corresponding estimated 
HRV spectrum is as shown in Fig. 2(b). Observing the figure, 
we may find that although there are small distortions seen in 
the higher frequency bands, the locations and the magnitudes 
of the main lobes in LF and HF bands are almost the same as 
those of the actual spectrum as depicted in Fig. 2(a). One may 
notice that while the simulated RR data can tolerate 90% data 
loss, the real RR data only tolerate 10% data loss. This is 
because the simulated RR intervals are completely sparse with 
S = 3 (recall the definition of S in section II-B), whereas the 
real RR interval data are considered as a compressible signal.  
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Figure 1. (a) The HRV spectrum derived from the complete simulated RR 

intervals. The MSE between the estimated spectrum and the true spectrum is 

1.97568e-008.  (b) The HRV spectrum derived from the simulated RR 

intervals truncated randomly with R = 0.9. The MSE between the estimated 

spectrum and the true spectrum is 3.96636e-007. 
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Figure 2. (a) The HRV spectrum of a normal subject derived from the 

complete RR dataset. (b) The HRV spectrum of the normal subject derived 

from the incomplete RR dataset with R = 0.1 (a randomly-truncated case). 
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To further investigate the robustness of proposed method 
in depth, using the RR dataset of the same normal subject we 
first estimated the true HRV spectrum from the complete RR 
dataset (as given in the form of a column vector), and then 
estimated the HRV spectra from incomplete RR datasets 
formed by truncating the RR intervals in the top, in the bottom, 
and in a randomly non-consecutive order from the original RR 
vector with R ranging from 0.01 to 0.99, respectively. We then 
measured the similarities between the true HRV spectrum and 
those derived from incomplete RR datasets, respectively, by 
calculating the Correlation Coefficients (CC) and Mean 
Squared Error (MSE) among them. 

Figs. 3(a) and (b) present the plots of CC versus R and 
MSE versus R of the normal subject, respectively. It is 
revealed from these plots that the performances of spectral 
estimation are almost the same no matter the RR intervals are 
truncated from the top or from the bottom. Also, the numerical 
results indicated that the proposed method may tolerate up to 
13% and to 14% of data loss caused by truncating the RR 
intervals from the top and from the bottom, respectively, while 
CC remains above 0.95 in both cases. On the other hand, 
although the performance obtained from the incomplete RR 
dataset formed by randomly truncating the RR intervals 
appears to degrade faster when R becomes larger, the scenario 
of randomly truncated case actually makes more sense in 
practice. As a result, with CC equal to 0.95, the proposed 
method can tolerate 23% loss of RR data in the randomly 
truncated case, which is competitive with the performances 
obtained from the top- and the bottom-truncated cases. 

From the results one may see that even though the top- or 
bottom-truncated RR time series may lose a significant 
portion of data, the incomplete RR recording formed by the 
remaining consecutive RR intervals can still well preserve the 
major spectral characteristics of HRV. On the other hand, 
since the HRV spectral estimation performance obtained from 
the randomly truncated RR dataset would quickly degrade 
when the data loss rate R became large, we may speculate that 
in the randomly-truncated case more RR data may be required 
to preserve the major HRV spectral characteristics. However, 
when R is restricted to an adequately small value (typically 
below 0.15), the HRV spectral estimation performance on the 
randomly-truncated case is actually comparable to those on 
both the top- and bottom-truncated cases.  

IV. CONCLUSION 

In general, the IPFM model has been widely accepted as a 

functional description of the mechanism by which the 

autonomic nervous system modulates the HR. In this study, a 

novel HRV spectral estimation method developed by 

combining the use of the IPFM model and the CS framework 

is proposed. Tests conducted using the simulated and real RR 

datasets indicated that the proposed method is capable of 

providing accurate HRV spectral estimates with a degree of 

robustness, even when the RR data is incomplete or corrupted 

due to ectopic or missing beats occurred in practice. 
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Figure 3. (a) Correlation coefficients versus R of a normal subject. (b) Mean 

squared error versus R of a normal subject. 
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