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Abstract— MicroRNAs (miRNAs) are small non-coding 

RNAs that regulate fundamental cellular processes in diverse 

organisms and that have an important function in gene 

expression regulation. miRNAs seem capable to concurrently 

modulate hundreds of target genes. Their abnormal expression 

is emerging as important element in many pathological 

conditions. The identification of microRNA binding sites on 

those proteins that can be disease biomarker is fundamental to 

design synthetic artificial oligomers. In this paper we suggest a 

method, based on signal processing, to filter out potential 

miRNA recognition sites in the 3’ UTR region of mRNAs.  

I. INTRODUCTION 

MicroRNAs (miRNAs) are the more extensively studied 

non-coding RNAs. They are heavily implied in the control 

of many different cellular functions. The altered expression 

of miRNA is often associated with diseases such as, for 

example, cancer or diabetes. A miRNA controls gene 

expression, at post-transcriptional level, by interaction with 

specific recognition sites. These nucleotide motifs are 

mostly present in the 3’ UTR of a messenger RNA. The 

identification of those miRNA that control a single protein 

level is important to estimate the post-transcriptional control. 

In both cases, from miRNA to protein and reverse, it is 

important to screen, in a reliable way, the recognition sites 

for all the potentially interacting miRNAs. Currently only a 

limited number of protein targets have been experimentally 

validated. This limitation depends on the capability of each 

miRNA to inhibit hundreds of different genes. The majority 

of computational tools [1-3] for target prediction tend to 

originate, taking a statistical score into account, a redundant 

list of potential targets. These methods generally are founded 

on sequence pattern matching between mature miRNA and a 

messenger RNA (mRNA).  

Digital Signal Processing (DSP) methods were applied for a 

long time in biosequence analysis [4]. In many cases 

nucleotides have been represented by lexicographic order 

(A=1, C=2, G=3, T/U=4) or by different binary codes that 

can represent not only the nucleotide but also its properties 

such as number of H-bonds or weak (A, T/U) or strong (G, 

C). A very promising method to code nucleotide is based on 

electro-ion interaction potential. [5] Our analysis has been 
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focused on identification, by signal processing methods, of 

potential binding sites for a specific miRNA.  

 

II. METHODS 

Dataset preparation an compositional analysis 

We have selected the human mir-636 because its precursor 

shows a very high content of GC respect the other human 

pre-miRNA. This compositional property seems potentially 

correlated with mutation propensity (CpG) [6]. The mir-636 

seems to be downregulated in Cancer (tumor suppressor 

miRNA) [7]. We have classified the potential targets 

retrieved from Microcosm (http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/) [8] (830 potential 

different targets). This preliminary classification has allowed 

to filter out a limited number of potential targets with high 

score. Here, for sake of simplicity, we present an excerpt of 

statically significant proteins. In this paper we have selected 

a set of putative targets for mir-636. This microRNA is 

characterized by a high content of CpG dinucleotide. 

Proteins that are been taken into account are listed in table I. 

 

3’UTR FASTA sequence has been retrieved from Ensembl 

database (www.ensembl.org). [9] Resonant Recognition 

Model (RRM) [10, 11] has been applied to each sequence of 

our dataset. RRM is a physical and mathematical model 

which interprets biological sequence linear information 

using signal analysis methods in order to treat the primary 

sequence as a discrete signal. In this case we have applied 

RRM to a RNA sequence.  

 

Signal Processing analysis 

The first step is the transformation of the symbolic sequence 

into a numerical one. Each nucleotide is mapped into a value  
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TABLE I. CONSIDERED PROTEINS 

Protein Acronym 

taste receptor 1 Tas1r1 

ras-related C3 botulinum 

toxin substrate 3 

Rac3 

ras-related C3 botulinum 

toxin substrate 1 

Rac1 

pannexin 2 Panx2 

Mitochondrial ribosomal 

protein L19 

Mrpl19 

apolipoprotein B mRNA 

editing enzyme 

Apobec3h 

plexin D1 Plxnd1 

 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5558978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

 

 

 

a) b) 

 
c) 

 
d) 

 
e) f) 

Figure 1 Magnitude of STFT multiplied by Power Spectrum for RNA sequences of (a) Apobec3h , (b) Mrpl19, (c) Panx2, (d) Plxnd1, (e) Rac1, (f) Tas1r1 
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of electron–ion interaction potential [12, 13] (EIIP). This 

parameter is an estimate of average energy states of all 

valence electrons in a particular nucleotide. Table II shows 

the values of EIIP for each nucleotide. The next steps use 

digital signal analysis methods applied to the obtained 

numerical series in order to investigate the potential 

correlation between spectral characteristics and biological 

function. In particular our analysis is concentrated on the 

possibility to reduce the ‘redundancy’ of miRNA binding 

sites originated by multiple sequence alignment. 

 

 

In our study we have applied a Short Time Fourier 

Transform (STFT) based method to each 3’UTR mRNA 

sequence to evidence possible different function related to 

different position in the sequences. Using this approach it is 

possible to correlate the signal with specific position in the 

nucleotide sequence.  

 

 

The STFT introduce time-localization by dividing a signal 

into a number of short overlapping sections using a sliding 

window. Fourier transform is not apply to the whole signal, 

but only to the section selected by the sliding window.  

Thus, we have a series of frequency spectra with each 

spectrum corresponding to a short interval of time. The 

STFT is defined by 
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where L is the window length, N is the DFT length, R is the 

shift interval, and r and k are integers such that  
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The time and frequency resolution depends by the length 

of the window. An increase in the window length enhances 

the frequency resolution at the expense of the time resolution 

while a decrease in the window length improves the time 

resolution at the expense of the frequency resolution.  

Some proposed methods [14] in literature suggest to obtain 

a consensus spectrum by multiplication of the DFT 

coefficient of some similar sequences (eg. protein sequences 

of same family). Conversely, in this case we can consider 

only one sequence at time, then the power spectral density 

(PSD) has been calculated We then chose a Hanning 

window of length 10 samples with a superposition of 5 

samples. In our analysis we have selected a window of 5 

based amplitude. This dimension satisfies two main clauses: 

a) the resulting set of combinations is easily enumerable; b) 

this amplitude does not overlap with the maximal number of 

potentially coding triplets [14]. 

We then obtained the STFT of the sequence. Then we 

evaluated the squared magnitude of the columns of the STFT 

multiplied by the PSD. The last step is a convenient way of 

emphasizing the frequency where putative miRNA binding 

region are located and de-emphasizing all other frequencies 

in the STFT. 

This workflow has been adopted for each considered 

mRNA sequence. In figure 1 the results of the procedure are 

summarized for each nucleotide. 

III. RESULTS AND DISCUSSION 

The table III summarize the number of miRNAs predicted 

by Microcosm system and the number of region selected by 

our study. The DSP allows to filter out the binding sites with 

highest STFT peaks that are correlated with high 

intermolecular interaction propensity. 

The miRNA binding sites are commonly identified by 

different sequence alignment methods. These tools do not 

give an estimate of miRNA-mRNA interaction capability. 

Our DSP analysis, even if in a preliminary phase, has 

allowed to filter out a subset of 3’ UTR domains, associated 

with spectra peaks higher than standard deviation (std), in 

which fall several miRNA binding sites. The peak intensity 

seems to be related with the number of putative overlapping 

TABLE II. ELECTRO ION INTERACTION PSEUDO POTENTIALS OF 

NUCLEOTIDES 

Nucleotide EIIP values 

A 0.1260 

G 0.0806 

C 0.1340 

T 0.1335 

 

TABLE III. NUMBER OF MIRNA INTERACTING WITH GENES AND THEIR INTERACTING REGIONS 

Gene name  Transcript No. miRNAs 

(Microcosm) 

No. of putative 

interaction 

region  

Tas1r1 ENST00000328191 8 17 

 ENST00000333172 46 5 

Rac3 ENST00000306897 62 9 

Rac1 ENST00000356142 18 2 

 ENST00000348035 NA 17 

Panx2 ENST00000159647 29 19 

Mrpl19 ENST00000358788 30 9 

 ENST00000393909 NA 15 

Apobec3h ENST00000348946 46 7 

Plxnd1 ENST00000324093 24 14 

 

5560



  

binding sites identified by Microcosm. Our analysis has also 

underlined the presence of a motif with a high peak in the 

boundary between coding sequence and 3’ UTR. Is to be 

noted the difference between two transcript of Tas1R1 gene. 

The bolded sequence, as reported in Ensembl database, 

seems probably refer to a different isoform of protein. This 

entry shows a lower number of miRNA respects to the 

number of putative interaction regions. This result appears to 

be opposite in relation to the obtained ones with the other 

considered sequences. The comparison between the two 

forms of Tas1R1, underlined in the table below, suggest the 

possibility to use the proposed approach to predict potential 

sequencing error or differences due to genetic variability. 

This very preliminary information suggests us to apply this 

method on recognition of new cryptic regulatory signals in 

mRNAs. Microcosm did not used all transcripts for miRNA 

to detect, by alignment, miRNA’s binding sites. On the 

contrary signal processing has identified some domains that 

could be related with the presence of putative miRNA’s 

interaction motifs. 

Our DSP approach has also identified a motif with minimal 

peak in the terminal region of 3’ UTR. These preliminary 

results suggest the possibility to obtain a relative simple 

potential functional landscape for 3’ or 5’ UTR regulatory 

regions. 

IV. CONCLUSIONS 

Our analysis underlines the potentiality of DSP in the search 

of miRNA binding sites. The optimisation of miRNA 

binding site screening requires an integrative approach that 

allows to combine different computational approaches. 

Taking this consideration into account, the STFT method 

could be a promising tool that can complement alignment 

methods in order to reduce the binding sites redundancy of 

pattern matching approaches. We plan to extend the analysis 

of 3’UTR to other ortholog gene classes considering their 

significance as biomarkers for different kinds of 

cardiovascular diseases. In the future we also intend to apply 

different DSP methods, such as Wavelet and S-transform, in 

order to improve the capability to filter out the binding sites 

with the highest interaction probability. 
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