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An adaptation of Pfam profiles to predict protein sub-cellular
localization in Gram positive bacteria
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Abstract— Predicting the sub-cellular localization of
a protein can provide useful information to uncover
its molecular functions. In this sense, numerous pre-
diction techniques have been developed, which usually
have been focused on global information of the protein
or sequence alignments. However, several studies have
shown that the functional nature of proteins is ruled
by conserved sub-sequence patterns known as domains.
In this paper, an alternative methodology (PfamFeat)
for gram-positive bacterial sub-cellular localization was
developed. PfamFeat is based on information provided by
Pfam database, which stores a series of HMM-profiles
describing common protein domains. The likelihood of
a sequence, to be generated by a given HMM-profile,
can be used to characterize sequences in order to use
pattern recognition techniques. Success rates obtained
with a simple one-nearest neighbor classifier demonstrate
that this method is competitive with popular sub-cellular
prediction algorithms and it constitutes a promising
research trend.

I. INTRODUCTION

Prediction of sub-cellular localizations of proteins
is one of the greatest issues in bioinformatics. When
protein localization is known, it is possible to get
information about its role in the cell and also it can
help in the design of protein isolation experiments,
and in the identification of contaminants in proteomic
analysis [1]. In particular, computational predictions for
bacterial sequence proteins can be useful for searching
novel vaccines and drug targets [2].

Predictors based on machine learning and pattern
recognition techniques offer the possibility to analyze
massive data and therefore, they have became increas-
ingly used in the last years; e.g., CELLO [3] is a multi-
class classification system based on support vector
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machines (SVM) that maps each protein sequence into
a feature space by using n-peptide compositions as
features. SubcellPredict [4] also characterizes proteins
by amino acid compositions, but it uses AdaBoost algo-
rithm instead of SVMs to predict cytoplasmic, periplas-
mic and extracellular localizations sites in prokaryotic
and eukariotyc organisms. Gpos-mPloc is part of Cell-
PLoc 2.0 [5], a package of web servers designed for
prediction of cellular localizations in different organ-
isms. In particular, Gpos-mPloc predicts subcellular
localization of gram-positive bacterial proteins by using
a top-down approach based on BLAST alignments.
Psortb [6], in turn, is a collection of different modules
to decide the sub-cellular localization of a query pro-
tein. Although those methods have shown certain suc-
cess on predicting sub-cellular localizations on bacteria,
BLAST alignments used by Gpos-mPloc are prone
to fail on identifying homologous proteins at signif-
icant E-values [7]. Characterizations of CELLO and
SubcellPredict use global properties of the sequences.
However, the functional nature of proteins is given
by conserved regions known as protein domains [8].
Information of protein domains is commonly stored in
databases like Pfam [8], a large collection of 13672
conserved protein domains and families, where, each
one is represented by a Hidden Markov Model (HMM)
[9]. Thus, these profiles should be used in order to
identify sub-cellular localizations. This paper presents
a methodology for sub-cellular localization prediction
on gram-positve bacterial proteins by means of fea-
tures corresponding to likelihood scores from Hidden
Markov Models (HMM); latter belong to representative
profiles in Pfam. Results were compared with GPos-
mPloc [10] and CELLO version 2.5 [3], and these ones
showed that PfamFeat can reach similar performances
even when it was used a low complexity classifier such
as the rule of the nearest neighbor.
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II. MATERIALS AND METHODS

The present methodology is based on constructing a
feature space in which proteins are represented by n-
dimensional vectors of likelihood scores. The number
of components n, corresponding to the dimensions of
the feature space is determined by the number of HMM
profiles retrieved by Pfam for the training dataset. This
feature space can thus be used to induce a decision
rule through conventional pattern recognition classifiers
and predict sub-cellular localization sites based on the
distribution of the training data.

A. Database

Proteins for the training set were chosen according
to the data set described in [11]. Such data set is
comprised by 1206 proteins: 62 from cell wall, 500
cytoplasmic proteins, 500 from the cytoplasmic mem-
brane and 144 extracellular proteins. On the other hand,
the data set reported by Gpos-mPLoc [10] was used to
test the method. This data set contains 523 sequences
distributed as follows: 18 to the cell wall, 208 to the
cytoplasm, 174 belonging to cytoplasmic membrane
and 123 extracellular proteins. In order to eliminate
train-test redundancy, an 80% identity cutoff between
train and test sets was done with CD-HIT software [12].

B. Local feature descriptor

The procedure to map protein sequences into the
feature space is described as follows:

Step 1. The training protein sequences are matched
by each sub-cellular localization on the Pfam sequence
search server [13]. Then a list of related HMM profiles
P = [kc, ko, kp, kg)| are identified per localization.

Step 2. The HMMER software package is used to
compute the profile-sequence pairwise distance. The
reported average posterior probability by HMMER was
used for this purpose. Essentially, this measure is the
expected alignment accuracy and decides if the align-
ment is well-determined or not [9]. Thus, the query
protein Q can be formulated in the local feature space
P as:

Qp = [dkscry---dkscry--dkscrm) (1D

where, dkscyr ;) is the dissimilarity between the sub-
cellular localization domain SCL i (i.e., cytoplasmic
C) and the query sequence Q.

C. Classification process

Prediction was carried out using the 1-nearest-
neighbor classifier (1-nn) following the one-against-
all strategy. This strategy produces a strong class
imbalance, so, the Synthetic Minority Over-sampling
Technique (SMOTE) was employed [14]. Moreover, the
1-nn was trained using all pairwise-distances among the
train data set and the selected profiles HMM from Pfam.
Thus, in order to remove redundant local features,
the Fast Correlation-Based Filter algorithm ([15]) was
used.

III. RESULTS AND DISCUSSION

A total of 1507 HMM profiles were found to be
correlated to the training dataset. For cytoplasmic pro-
teins there were detected a total of 780 Pfam terms,
of whom, 72.69% were domains, 27% families, 0%
motifs and 0.3% repeats. In cytoplasmic membrane
localization a total of 580 terms were found as follows:
34.51% domains, 64.4% families, 0.6% motifs and
0.4% repeats. It is worth to note that there are more
domains for cytoplasm than for cytoplasmic membrane.
This could be due to the fact that bacterial proteins can
either remain in the cytoplasm or these ones can be
targeted to one or more sites through one of several
different transport sistems, i.e., type I, which carries
proteins into the extracellular space directly from the
cytoplasm [16]; type II, which involves insertion into,
or translocation across, the cytoplasmic membrane [17];
type III and type IV secretion systems, which directly
inject products into the cytoplasm of a neighboring
cell [18] and type V which self-transports a passenger
domain using a C-terminal pore domain [19]. Cyto-
plasmic membrane is important in cell communication,
it is contained from a variety of families such as
transporters participating in the secretion of proteins,
complex carbohydrates, and lipids into and beyond the
cytoplasmic membrane ([20],[21]). Thus, the results
of mapping cytoplasmic membrane proteins into pfam
shown a high concentration of families than other kind
of sub-structure. Domains were the most frequents on
extracellular and cell wall proteins with a 57.7% and a
39% respectively.

The cumulative distribution among domains and
localization allows to identify frequent probabilities
(Figure 2). The Pfam terms were found on training
data set and then, these ones were mapped into test
sequences. Then, the distribution above test sub-cellular
localizations are from 0.6 to 0.9 probability interval.
So, these distributions demonstrates that the Pfam terms
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Fig. 1.

Feature descriptor based on Pfam terms. The training data set was uploaded to Pfam data base to find correlated domains to

each sub-cellular localization. These domains are interpreted as Local Features and the training data set is mapped into a feature space
constructed by the HMM profile-sequence pairwise score. Finally, a /-NN classifier was trained to predict sub-cellular localizations.

are a good representation for both, training and testing
sequences.

It was determined by a series of trial and error
tests that those profiles related with seven or less
protein sequences could be discarded without severely
affecting the performance of the system. Thus, a set
of 323 profiles was finally chosen: 99 correlated to
cytoplasm, 86 to cytoplasmic membrane, 49 to cell
wall and 98 belonging to extracellular localization. This
way, testing dataset comprised a feature matrix of 523
elements with 323 features. In order to validate the
procedure, a ten-fold cross validation was carried out
and the success rate metric, defined as TP/(T P+ FN)
(TP: true positives; FN: false negatives), was used to
evaluate the performance.

The following approaches were used to compare sub-
cellular localization prediction: 1) GPos-mPloc reports
an average success rate of 82.2% whereas the PfamFeat
proposed method showed an average of 83.5%. 2)
CELLO version 2.5 [3] showed an average success
rate of 76.6%, it is about 7% smaller than PfamFeat.
Predictions of the whole localizations are shown in
Table 1.

TABLE I
SUCCESS RATES OF THE PROPOSED METHODOLOGY AND
CELLO

Subcellular location Success rate (%)

PfamFeat CELLO
Cell membrane 152/174 = 87.4  151/174 = 86.8
Cell wall 12/18 = 66.7 7/18 = 38.9
Cytoplasm 190/208 = 91.3  200/208 = 96.2
Extracell 109/123 = 88.6  104/123 = 84.5
Overall 463/523 = 83.5 462/523 = 76.6

IV. CONCLUSIONS

In this study, a methodology for prediction of sub-
cellular localizations based on sequences representation

according to HMM-profiles from Pfam, was proposed.
Experiments showed that this type of features are
discriminant for the classification problem of gram-
positive sub-cellular localizations. Performances ob-
tained with PfamFeat, where it was used a simple /-
nnc classifier, were comparable with those obtained by
CELLO, even when this last one uses a highly complex
classifier such as a support vector machine. In partic-
ular, a remarkable result was the obtained for the cell
wall location, where PfamFeat achieved a considerable
higher performance in comparison with CELLO. This
is possibly due to the fact that global features are not
as relevant as local features for this particular class,
but further studies would be required to explain this
results. The /-nn classifier was used, mainly because
the goal of this work was to show that by using the
proposed methodology, it is possible to obtain a robust
representation so that classification could be carried
out by simple classifiers. As future work it should be
useful to test the proposed methodology over several
other datasets and design of a web server for protein
prediction. The proposed methodology can be extended
to deal with terms that are not included in the Pfam
data base, whenever some dissimilarity matrix can be
computed for the training and testing sequences.
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Fig. 2. Training and testing distributions from Pfam founded terms. The x axis is the average probability given by the pairwise alignment
based on hidden Markov models and y axes is the density distribution. These histograms show the range between the pfam terms are
related for each localization.

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

REFERENCES

J. Gardy and F. Brinkman, “Methods for predicting bacterial
protein subcellular localization,” Nature Reviews Microbiol-
ogy, vol. 4, no. 1, pp. 741-751, 2006.

G. Schneider, “How many potentially secreted proteins are
contained in a bacterial genome?” Gene, vol. 237, no. 1, pp.
113-121, 1999.

C. Yu, C. Lin, and J. Hwang, “Predicting subcellular localiza-
tion of proteins for gram-negative bacteria by support vector
machines based on n-peptide compositions,” Protein Science,
vol. 13, no. 5, pp. 1402-1406, 2004.

B. Niu, Y. Jin, K. Feng, W. Lu, Y. Cai, and G. Li, “Using ad-
aboost for the prediction of subcellular location of prokaryotic
and eukaryotic proteins,” Molecular diversity, vol. 12, no. 1,
pp. 4145, 2008.

K.-C. Chou and H.-b. Shen, “Cell-PLoc 2.0: an improved
package of web-servers for predicting subcellular localization
of proteins in various organisms,” Natural Science, vol. 02,
no. 10, pp. 1090-1103, 2010.

Y. Nancy, J. Wagner, M. Laird, G. Melli, S. Rey, R. Lo,
P. Dao, S. Sahinalp, M. Ester, L. Foster et al., “Psortb
3.0: improved protein subcellular localization prediction with
refined localization subcategories and predictive capabilities
for all prokaryotes,” Bioinformatics, vol. 26, no. 13, pp. 1608—
1615, 2010.

T. Hawkins, M. Chitale, S. Luban, and D. Kihara,
“PFP: Automated prediction of gene ontology functional
annotations with confidence scores using protein sequence
data.” Proteins, vol. 74, no. 3, pp. 566-582, 2009. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/18655063

M. Punta, P. Coggill, R. Eberhardt, J. Mistry, J. Tate,
C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements
et al., “The pfam protein families database,” Nucleic acids
research, vol. 40, no. D1, pp. D290-D301, 2012.

S. Eddy, “Hmmer3: a new generation of sequence homology
search software. url: http://hmmer. janelia. org,” Accessed,
vol. 7, no. 25, p. 2010, 2010.

H. Shen and K. Chou, “Gpos-mploc: A top-down approach to
improve the quality of predicting subcellular localization of
gram-positive bacterial proteins,” Protein and Peptide Letters,
vol. 16, no. 12, pp. 1478-1484, 2009.

[11] N. Yu, M. Laird, C. Spencer, and F. Brinkman, “Psortdban
expanded, auto-updated, user-friendly protein subcellular lo-
calization database for bacteria and archaea,” Nucleic acids
research, vol. 39, no. suppl 1, p. D241, 2011.

Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, “Cd-hit
suite: a web server for clustering and comparing biological
sequences,” Bioinformatics, vol. 26, no. 5, pp. 680-682, 2010.
R. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. Pollington,
O. Gavin, P. Gunasekaran, G. Ceric, K. Forslund et al.,
“The pfam protein families database,” Nucleic acids research,
vol. 38, no. suppl 1, pp. D211-D222, 2010.

K. Bowyer, N. Chawla, L. Hall, and W. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Arxiv preprint
arXiv:1106.1813, 2011.

L. Yu and H. Liu, “Feature selection for high-dimensional
data: A fast correlation-based filter solution,” in MA-
CHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, vol. 20, no. 2, 2003, p. 856.

I. Holland, L. Schmitt, and J. Young, “Type 1 protein secretion
in bacteria, the abc-transporter dependent pathway (review),”
Molecular membrane biology, vol. 22, no. 1-2, pp. 29-39,
2005.

M. Miiller and R. Bernd Klosgen, “The tat pathway in bacteria
and chloroplasts (review),” Molecular membrane biology,
vol. 22, no. 1-2, pp. 113-121, 2005.

P. Christie and E. Cascales, “Structural and dynamic proper-
ties of bacterial type iv secretion systems (review),” Molecular
membrane biology, vol. 22, no. 1-2, pp. 51-61, 2005.

D. Thanassi, C. Stathopoulos, A. Karkal, and H. Li, “Protein
secretion in the absence of atp: the autotransporter, two-
partner secretion and chaperone/usher pathways of gram-
negative bacteria (review),” Molecular membrane biology,
vol. 22, no. 1-2, pp. 63-72, 2005.

A. Davidson, E. Dassa, C. Orelle, and J. Chen, “Structure,
function, and evolution of bacterial atp-binding cassette sys-
tems,” Microbiology and Molecular Biology Reviews, vol. 72,
no. 2, p. 317, 2008.

M. Saier Jr, “A functional-phylogenetic classification system
for transmembrane solute transporters,” Microbiology and
Molecular Biology Reviews, vol. 64, no. 2, p. 354, 2000.

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

5557



	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

