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Abstract—Combining multi-types of genomic data for 

integrative analyses can take advantage of complementary 

information and thus can have higher power to identify 

genes/variables that would otherwise be impossible with 

individual data analysis. Here we proposed a sparse 

representation based clustering (SRC) method for integrative 

data analyses, and applied the SRC method to the integrative 

analysis of 376821 SNPs in 200 subjects (100 cases and 100 

controls) and expression data for 22283 genes in 80 subjects (40 

cases and 40 controls) to identify significant genes for 

osteoporosis (OP). Comparing our results with previous studies, 

we identified some genes known related to OP risk, as well as 

some uncovered novel osteoporosis susceptible genes 

(‘DICER1’, ‘PTMA’, etc.) that may function importantly in 

osteoporosis etiology. In addition, the SRC method identified 

genes can lead to higher accuracy for the identification of 

osteoporosis subjects when compared with the traditional T-test 

and Fisher-exact test, which further validate the proposed SRC 

approach for integrative analysis. 

I. INTRODUCTION 

During the past few years, various clustering techniques have 

been developed to identify subsets of genes significant for 

diagnosis or classification[1]-[7].
 
For example, Soneson et al. 

used Canonical Correlation Analysis (CCA) for joint analysis 

of gene expression and copy number variations (CNVs) [2]. 

Berger et al. developed a generalized singular value 

decomposition (GSVD) to locate genes with both high 

variations across genes and high correlation across samples 

between gene expression changes and CNVs [4]. These 

methods demonstrated limited success[2][4]. Due to different 

nature, structure and format of diverse sets of genomic data, 

multiple genomic data integration is challenging[2]-[4]. In 

this work, we employed the sparse representation based 

clustering (SRC) method for gene selection using joint 

analysis of two different types of genomic data: gene 

expression data and SNP data, based on multiple 

characteristics extracted from genomic data. Sparse 

representation or compressive sensing (CS) is a novel 
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statistical method recently developed in statistics and applied 

mathematics, which has found many successful applications 

in many disciplines. For example, Wright et al. proposed a CS 

based method for face recognition, which showed better 

accuracy and resistance to noise [8].
 
We have developed and 

applied the SRC method for chromosome image 

classification and showed improved accuracy [9].  

  To validate our method, we apply it to the study of 

osteoporosis, which is a major public health problem over the 

world [10][11].
 

However, specific genetic factors 

contributing to development of osteoporosis are largely 

uncharacterized.  

 The paper is organized as follows. We first briefly describe 

the two data sets we tested on (SNP data and gene expression 

data) and the SRC model we proposed. Then we applied the 

method to gene selection through integrative analysis of both 

data sets. For the purpose of comparison with individual data 

analysis, we also performed the study on each data type. To 

demonstrate the advantage of integrative approach, we 

compared the selected genes using the SRC method with 

previously reported osteoporosis susceptive genes [5][12].
 
To 

further validate the selected genes, we applied the method to 

the classification of osteoporosis patients with the selected 

gene expression and/or SNP data. Results showed that SRC 

method is able to better locate genes significant for the 

diagnosis of osteoporosis patients than that from single data 

sets. In addition, our proposed SRC method gives better 

diagnosis results when compared with T-test and Fisher-exact 

test. In particular, we identified two new potential 

osteoporosis related genes (e.g., ‘DICER1’, ‘PTMA’) through 

joint data analysis. Those genes cannot be located with single 

data set but show significant roles in osteoporosis etiology 

from studies published, which suggests that integrated data 

analysis can provide new insights into the identification of 

disease susceptive genomic markers.  

 

II. MATERIAL AND METHODS 

In this section, we first describe the data used in our study 
(Section A). Then we present the SRC model (Section B), the 
feature selection method (Section C) and the SRC based 
gene/variable shaving algorithm (Section D).  
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A. Data 

We applied the SRC method to an integrative analysis of two 

data sets (i.e., gene expression data set and a SNP data set) 

from osteoporosis study. We describe the data sets as follows. 

 The gene expression data was from female osteoporosis 

subjects with extremely low (N=40) (cases) vs. high (N=40) 

(controls) bone mineral density (BMD)[13]. In the present 

study we selected circulating monocytes as our target cells 

because circulating monocytes serve as progenitors of 

osteoclasts [14][15], and secrete osteoclastogenic cytokines, 

such as IL-1, IL-6, and TNF-  [16][17]. 

The  SNP data set was from osteoporosis vs. health 

subjects, which were recruited with the purpose of identifying 

genetic factors underlying osteoporosis via genome-wide 

association study in a total of 1000 random female subjects 

(age: 50.3+18.3 years) [13]. We selected the bottom 100 and 

top 100 subjects of the BMD phenotypic distribution as cases 

and controls, respectively. A total of 376821 eligible SNPs 

were used in final analysis. In addition, we randomly selected 

70 cases and 70 controls as training data for gene selection, 

and the rest 30 cases and 30 controls were used as an 

independent testing data set.  

To perform joint data analysis, we generate a combined 

data set from the two single data sets, as shown in Fig. 1. For 

each gene, the feature vector contains two sub-vectors 

corresponding to gene expression and SNP data, which will 

be used as the input to our SRC method for joint data analysis. 

B. SRC Model  

Figure 2 shows the diagram of the proposed SRC model. 

            consists of the feature vectors extracted 

from the ‘Data’, where         is the feature vector 

extracted for the  th gene/variable;   is the number of 

features;          , and   is the number of gene/variables. 

Each column of   is normalized to be within the range of 

[0,1].                  is the characteristic matrix 

that we will design to separate the data into   groups. In each 

group          contains    samples, and   ∑  . The 

‘SRC clustering’ is to cluster each    according to the 

characteristic matrix  . The design of characteristic matrix   

and detailed description of ‘SRC clustering’ algorithm can be 

found in [18]. 

 

Figure1 An illustration of the combination of two different types of data for 

the  th gene with   expression vectors and    SNP vectors. 

 

Figure 2 Diagram of SRC model for the data analysis using multi-features 
  

C. Features selection  

In this work, we extract five features for each 
gene/variable (gene expressions or SNPs): 

           | ̅   ̅ | |    |   ‖ ‖  
 


where  ̅  and  ̅ ,      and      are the means and 
standard deviation of control and case group respectively; 
     is the Pearson correlation coefficient between each gene 
expression (SNP) data and the healthy status (‘1’ for patients, 
and ‘0’ for controls); and   is the normalized amplitude of 

vector            | ̅   ̅ | |    | 
 
. 

D. The SRC Based Gene/Variable Shaving  

When the data set is very large, which is always the case for 
genomic data, a window is applied and the gene selection is 
performed within the window (Figure 3 (a)) to account for 
local variations in the data, with a Fisher-Yates Shuffling 
algorithm [19] to reduce bias. Those selected with highest 
frequencies will be the ones that are most significant (3 (b)). 
Please see Algorithm 1 for details. 

Algorithm 1: SRC based gene shaving algorithm. 

1. Set the window length, window sliding step length, and 

starting point;  

2. For the l-th iteration, perform gene selection within a 

window and record the selected genes; 

3. Move the window from the starting point with the pre-set 

step length, and repeat step 2 until the window reaches 

the end of the data. 

4. Shuffle the data with Fisher-Yates Shuffling algorithm;
 

repeat step 2 – step 3.  

5. Compare the gene list generated by all l iterations with 

that generated by previous l-1 iterations; if the gene list 

change is smaller than a pre-set threshold, exit; 

otherwise, go to step 4. 
 

      
(a)                                   (b) 

Figure 3 The SRC based gene shaving with a sliding window (a) Gene 
selection was performed within each sliding window; (b) Bar plot of the 

selected genes with different frequencies. 
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III. RESULTS 

One goal of this work was to study whether integrative 

analysis approaches with our proposed SRC algorithm can 

lead to better identification of susceptible genes and diagnosis 

of complex diseases such as osteoporosis. To validate the 

selected genes, we compared our selected gene lists with 

those previously reported. In addition, we tested if the 

selected genes can result in better diagnosis of osteoporosis. 

A. Comparison of selected genes  

To show the differences between integrative analysis using 

the SRC and individual analysis with both SRC and 

traditional feature selection methods (e.g., T-test and 

Fisher-exact test), we compared the first 500 gene 

expressions and 1000 SNPs selected by different methods 

using the Venn diagram, as shown in Figure 4. The 

intersection between individual analysis using the SRC 

method and T-test for the gene expression selection is about 

45%; the intersection is about 39% for the selected SNPs 

using individual analysis for the SRC method and 

Fisher-exact test; and the intersection between combined 

analysis using SRC method and separated analysis is below 

10%.  
When compared to the previous osteoporosis study, the 

SRC based variable selection method located osteoporosis 
susceptive genes that reported before [14][19] such as 
'ESRRA', 'CALM1', 'CALM1', 'SPARC', 'LRP1', ’THSD4’, 
'CRHR1', 'HSD11B1’, 'THSD7A’, 'BMPR1B', 'ADCY10', 
'PRL', 'CA8’, et. al.. Specifically, there are some significant 
genes that were not identified by individual data analysis, such 
as ‘DICER1’, ‘PTMA’ etc.. Evidence shows that those genes 
may be associated with the osteoporosis disease [21]-[26]. 

B. Further validation of the selected variables 

 We used the SRC classifier proposed by us [9] followed by 
the leave one out (LOO) cross validation to further validated 
the selected. Classification ratio (CR), defined as the number 
of correctly classified samples over total number of samples, 
was used for the test accuracy. When using selected gene 
expression data alone to identify the osteoporosis patients, we 
got the highest (86.25%) with 73 expression data; while for 
t-test method, we got the highest CR of 90% with 225 gene 
expressions (Figure 5 (a)). For the SNP data set, we got the 
highest CR (100%) with 883 SNPs using the SRC, while the 
highest CR 96.5% with 1460 SNPs using Fisher-exact test 
(Figure 5 (b)). When testing on the independent SNP data set, 
the classification ratio reached as high as 98.33% with the 
SRC method, while the highest CR was only 88.33% with 
Fisher-exact test (Figure 5 (c)).  

           
(a)                                              (b) 

Fig. 4 Comparison of selected variables (expressions/SNPs) with integrative 

analysis to those with individual analysis using the Venn Diagram:  (a) 
comparison of the first 500 gene expressions selected with integrative 

analysis by the SRC method (A), individual analysis using SRC method (B) 

and using T-test (C) respectively; (b) comparison of the first 1000 SNPs 
selected with integrative analysis with the SRC method (A), individual 

analysis with the SRC method (B) and Fisher- exact test (C) respectively.  

 

 
                     (a)                                 (b)                                      (c) 
Figure 5 Comparison of classification results with different variable selection 

methods. (a) LOO validation results for the expression data by SRC method 

and t-test method respectively. (b) LOO validation results for the SNP data 
by SRC method and Fisher-exact test method respectively. (c) Testing on the 

independent SNP data set, with SRC method and Fisher exact test 

respectively. 

      
                                 (a)                                                   (b) 

Figure 6 Using selected variables from both data sets for the classification of 
osteoporosis patients. (a) Classification accuracy using gene expressions 

along with N=0, 83, 332 selected SNPs employed for the classification. (b) 

Classification accuracy using SNPs along with N=0, 75, 332 selected gene 
expressions employed for the classification. 

 

In addition, we compare the classification accuracy using 
both sub-vectors with that using one sub-vector as shown in 
Figure 6, which demonstrates higher identification accuracy 
using complementary information from both data sets.  

IV. DISCUSSION AND CONCLUSION 

In this work, we proposed an SRC based gene/variable 

selection method for the integrative analysis of multi-type 

genomic data and applied it to the identification of genes 

associated with osteoporosis diseases. The SRC method 

demonstrates two advantages: 1. Different from other 

analysis methods, the SRC method employs multi-features 

extracted from diverse data sets rather than the original raw 

data, facilitating the integration of data with different formats 

and structures. 2. The SRC method outperforms several 

currently used significance test methods such as the T-test 

and Fisher-exact test, by employing a more sophisticated 

clustering approach. 

When compared with previously reported osteoporosis 

susceptible genes, the SRC based gene shaving method not 

only identified genes that were previously reported [12], but 

also new susceptive genes (‘DICER1’, ‘PTMA’ et. al.). 

Evidences [21]-[26] have shown that those genes play a 

significant role in the etiology of osteoporosis. In particular, it 

should be noticed that those genes cannot be identified with 

the analysis of single data sets, which indicates the advantage 

of integrative analysis of multiple data sets 
When we compared the selected gene list with that 

selected by t-test and Fisher-exact test (Figure 4(a) and (b)), it 
can be seen that the variables (SNPs/expressions) selected by 
the SRC method are quite different (>50% in the number). 
However, the integrative analysis with the SRC method 
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selects two sub-vectors simultaneously, resulting in better 
accuracy even with one set of the data for classification(Figure 
5 and Figure 6), because of the use of complementary 
information in the SRC method. For example, using the SNP 
data, the SRC based method can give the highest CR of 100% 
vs. 96.5% of using Fisher exact test with less number of SNPs 
(see Figure 5 (b)). When using both types of data for the cross 
validation, the CR of using combined data sets with the SRC 
method is much higher than that of using single type of data 
(Figure 5 (c)), demonstrating the significance of integrative 
data analysis with the SRC method. In addition, when 
performing blind test on an independent SNP data set (30 
cases 30 controls), the CR can be as high as 98.33% with the 
SRC method; while with Fisher-exact test selected SNPs, the 
highest classification ratio is only 88.33%, showing the 
advantage of the SRC method. 

In the integrative analysis, the gene expression and SNP 
data were combined in terms of each gene. Therefore, the 
integrative analysis uses joint information from two 
complementary data rather than from a single type of data, 
which can lead to the increase of reliability in gene 
identification. Besides the significance discussed above, the 
integrative analysis employed in this work can be generalized 
to include more types of data. We are currently testing the 
method for the integration of multiple genomic data from 
TCGA database for improved diagnosis of cancers such as the 
leukemia.  
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