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Abstract— Accurate prediction of enzyme-inhibitor binding 
energy has the capacity to speed drug design and chemical 
genomics efforts by helping to narrow the focus of experiments. 
Here a non-redundant set of three hundred high-resolution 
crystallographic enzyme-inhibitor structures was compiled for 
analysis, complexes with known binding energies (∆G) based on 
the availability of experimentally determined inhibition 
constants (ki). Additionally, a separate set of over 1400 diverse 
high-resolution macromolecular crystal structures was 
collected for the purpose of creating an all-atom knowledge-
based statistical potential, via application of the Delaunay 
tessellation computational geometry technique. Next, two 
hundred of the enzyme-inhibitor complexes were randomly 
selected to develop a model for predicting binding energy, first 
by tessellating structures of the complexes as well as the 
enzymes without their bound inhibitors, then by using the 
statistical potential to calculate a topological score for each 
structure tessellation. We derived as a predictor of binding 
energy an empirical linear function of the difference between 
topological scores for a complex and its isolated enzyme. A 
correlation coefficient (r) of 0.79 was obtained for the 
experimental and calculated ∆G values, with a standard error 
of 2.34 kcal/mol. Lastly, the model was evaluated with the held-
out set of one hundred complexes, for which structure 
tessellations were performed in order to calculate topological 
score differences, and binding energy predictions were 
generated from the derived linear function. Calculated binding 
energies for the test data also compared well with their 
experimental counterparts, displaying a correlation coefficient 
of r = 0.77 with a standard error of 2.50 kcal/mol. 

I. INTRODUCTION 

EXPERIMENTAL high-throughput screening (HTS) is an 
effective method for discovering small molecular or 

peptide inhibitors that tightly bind a target enzyme [1]. 
Though the HTS process has the potential to be time 
consuming and expensive, the emergence of computer-based 
virtual HTS (vHTS) has led to more efficient identification 
of drug candidates from among a large collection of 
compounds [2]. A variety of computational tools have also 
been developed for estimating enzyme-inhibitor binding 
energy based on scoring functions that take into account 
physicochemical interactions, including X-Score [3], Lig-
Score [4], DrugScore [5], SFCscore [6], AutoDock4 [7], 
ITScore [8, 9], and PHOENIX [10]. Here we develop an 
empirical scoring function for predicting enzyme-inhibitor 
binding affinity, one that relies on an all-atom, four-body 

statistical potential derived by implementing the 
computational geometry technique of Delaunay tessellation. 
Our atomic potential compares well with other atomic 
energy functions [11, 12] in identifying the native structure 
as a global minimum, extensive work to be reported 
elsewhere. 

Two separate datasets of non-redundant, high-resolution 
crystallographic structures were complied for this study. 
One set includes over 1400 single and multi-chain proteins, 
many with bound ligands (inhibitors, substrates, or 
cofactors), whose tessellations were used to quantify the 
relative frequencies of atomic quadruplet interactions for the 
purpose of deriving the four-body statistical potential. The 
second group of macromolecular structures consists of three 
hundred enzyme-inhibitor complexes with experimentally 
measured inhibition constants (ki), from which we 
determined their respective binding energies (∆G). Two-
thirds of the latter structures were randomly selected to train 
an empirical model for calculating ∆G, first by tessellating 
the enzyme-inhibitor complexes as well as the enzymes 
without their bound inhibitors, then by using the four-body 
statistical potential to calculate a topological score for each 
tessellation, and finally by calculating the difference 
between topological scores for the complex and the isolated 
enzyme in each case. Based on these data, we derived a 
linear function of the topological score difference as a 
predictor of binding energy, a model evaluated by using the 
remaining set of one hundred complexes for testing.  

II. MATERIALS AND METHODS 

A. Datasets 
In order to develop the four-body statistical potential, we 

selected for Delaunay tessellation a non-redundant set of 
1417 high-resolution (≤ 2.2Å) crystallographic structures 
with atomic coordinate files deposited in the Protein Data 
Bank (PDB) [13], which additionally include protein    
chains that share a low (< 30%) sequence identity 
(http://proteins.gmu.edu/automute/tessellatable1417.txt). 
Structural diversity is highlighted by the fact that both 
single- and multi-chain proteins are represented, a majority 
of which are also complexed to small molecular or peptide 
ligands. The coordinates of hydrogen atoms and water 
molecules in all files were removed prior to tessellation. 

 A separate set of PDB files for three hundred enzyme-
inhibitor complexes was compiled from the Binding MOAD 
[14, 15] database to develop a predictive model of binding 
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energy (http://proteins.gmu.edu/automute/MOAD300ki.txt). 
The database contains all high-resolution  (≤ 2.5Å) 
crystallographic structures of protein-ligand complexes from 
the PDB, and where available, the structures are annotated 
with experimentally determined binding data extracted from 
the literature. A non-redundant Binding MOAD is also 
available to avoid the bias introduced by over-represented 
proteins in the PDB, which is obtained by clustering proteins 
into families of 90% sequence identity and selecting a single 
representative for each cluster. For our dataset, we chose 
enzyme-inhibitor complexes from among PDB structure 
files in the non-redundant Binding MOAD that were 
additionally annotated with experimentally determined 
inhibition constants (ki), and these values are included in the 
text file available from the above link. We randomly 
selected two-thirds of the enzyme-inhibitor complexes to 
train our model, which was tested using the held-out data, 
and the subset to which each structure belongs is also 
identified in the text file. 

B. Software and Performance Measures 
Qhull [16] was used to implement the Delaunay 

tessellation algorithm, while graphical depictions of the 
tessellated structures were produced with Matlab (Version 
7.0.1.24704 (R14) Service Pack 1). Molecular graphics were 
generated with the UCSF Chimera software package [17]. 
Lastly, ad hoc Perl codes were written as needed for the 
purposes of data formatting and analyses. 

The equation 

)ln(592.0)ln( ii kkRTG ×==∆  

was used for obtaining the binding energy (∆G, in units of 
kcal/mol) from the inhibition constant (ki) for each enzyme-
inhibitor complex, where R = 1.986 ×10-3 kcal K-1 mol-1 is 
the gas constant and T = 298° K is the absolute temperature. 
We evaluated agreement between experimental (xi) and 
predicted (yi) binding energy with the correlation coefficient 
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and the equation of the regression line. 

III. RESULTS AND DISCUSSION 

A. Four-body Statistical Potential 
A six-letter alphabet (C, N, O, S, M = all metals, X = all 

other non-metals) was used for labeling the atoms contained 
in the 1417 PDB structure files. Delaunay tessellations of 

the structures were obtained by supplying their atomic 
coordinates to the Qhull program, which treats the points as 
vertices and generates a three-dimensional convex hull of 
space-filling, non-overlapping, irregular tetrahedra. Edges 
longer than 8Å were removed from each structure 
tessellation prior to analysis to avoid false-positive atomic 
interactions, which is consistent with that used by other 
researchers to generate an atomic pair potential [18], while 
shorter than a 12Å cutoff we used previously to develop a 
coarser-grained amino acid four-body potential [19, 20]. 
Table I provides summary data regarding the atoms whose 
coordinates were supplied to Qhull, as well as the total 
number of tetrahedra generated by all the tessellations. 

TABLE I 
SUMMARY DATA FOR THE 1417 PDB STRUCTURE FILES 

Atom Types Count Proportion 
(carbon) C 3612988 0.633193 

(nitrogen) N 969253 0.169866 
(oxygen) O 1088410 0.190749 

(sulfur)  S 28502 0.004995 
(all metals) M 2529 0.000443 

(all other non-metals) X 4299 0.000754 
   

Total atom count: 5705981  
   

Total tetrahedron count: 34504737  
 

The four vertices of each tetrahedral simplex in a 
tessellation objectively identify an interacting atomic 
quadruplet, and based on a six-letter alphabet, there are 126 
distinct alternatives (Table II). For each type of atomic 
quadruplet (i,j,k,l), we calculated an observed relative 
frequency of occurrence fijkl based upon the proportion of 
tetrahedral simplices, from among those generated by all the 
structure tessellations, for which the quadruplet appears at 
the four vertices. A rate expected by chance for the 
quadruplet was determined from a multinomial reference 
distribution, given by 
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In the above formula, an represents the proportion of 
atoms from all tessellated structures that are of type n (Table 
I), and tn is the number of occurrences of atom type n in the 
quadruplet. Applying the inverted Boltzmann principle [21], 
we used the score sijkl = log (fijkl / pijkl) to quantify an 
interaction propensity for the atomic quadruplet. The set of 
126 atomic quadruplet types with their respective scores 
defines the four-body statistical potential (Table II).  

B. Topological Scores 
After tessellating the enzyme-inhibitor complexes, the 

atomic coordinates for the inhibitors were removed from the 
PDB files, and the modified structures of the enzymes 
without their inhibitors were also tessellated (Fig. 1).  All 
hydrogen atoms and water molecules were excluded from 
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TABLE II 
ATOMIC FOUR-BODY STATISTICAL POTENTIAL 

Quad Count sijkl Quad Count sijkl 
CCCC 4015872 -0.140244 MMNS 363 3.720958 
CCCM 1592 -0.989223 MMNX 0 -- 
CCCN 4025206 -0.169866 MMOO 306 2.315530 
CCCO 6202159 -0.032467 MMOS 104 3.127729 
CCCS 293157 0.224008 MMOX 3 2.409325 
CCCX 2796 -0.975047 MMSS 254 5.398477 

CCMM 132 0.908235 MMSX 2 3.815151 
CCMN 3318 -0.575981 MMXX 0 -- 
CCMO 5325 -0.420893 MNNN 1030 0.535960 
CCMS 2293 0.795108 MNNO 1128 0.047955 
CCMX 15 -0.567697 MNNS 561 1.326526 
CCNN 1797552 -0.124635 MNNX 5 0.098041 
CCNO 8233136 0.184864 MNOO 3744 0.518626 
CCNS 124653 -0.053081 MNOS 314 0.723107 
CCNX 2007 -1.024729 MNOX 29 0.510083 
CCOO 3366568 0.047161 MNSS 793 3.008398 
CCOS 198630 0.098905 MNSX 5 1.328573 
CCOX 4626 -0.712426 MNXX 9 2.706383 
CCSS 15288 0.868158 MOOO 5430 1.106856 
CCSX 144 -0.637352 MOOS 156 0.669977 
CCXX 143 0.482159 MOOX 168 1.523669 

CMMM 23 3.480397 MOSS 210 2.380989 
CMMN 144 1.216422 MOSX 4 1.181307 
CMMO 256 1.415945 MOXX 55 3.442148 
CMMS 662 3.410480 MSSS 62 3.910199 
CMMX 1 1.411130 MSSX 2 2.763224 
CMNN 2474 -0.132029 MSXX 0 -- 
CMNO 6267 -0.079754 MXXX 16 5.786451 
CMNS 2588 1.118068 NNNN 3878 -0.869698 
CMNX 26 -0.058415 NNNO 46665 -0.441730 
CMOO 8481 0.302308 NNNS 460 -0.866046 
CMOS 1010 0.659069 NNNX 34 -1.175817 
CMOX 68 0.308765 NNOO 340620 0.195102 
CMSS 2047 2.848813 NNOS 5637 -0.305233 
CMSX 13 1.172117 NNOX 302 -0.754766 
CMXX 6 1.958862 NNSS 311 0.319427 
CNNN 102035 -0.623046 NNSX 6 -0.874705 
CNNO 1995038 0.140679 NNXX 5 0.168652 
CNNS 15892 -0.376176 NOOO 171147 0.021937 
CNNX 578 -0.993919 NOOS 10697 -0.077374 
CNOO 2734639 0.227273 NOOX 3102 0.206513 
CNOS 95438 0.050981 NOSS 922 0.440012 
CNOX 2168 -0.771173 NOSX 12 -0.925060 
CNSS 4264 0.584024 NOXX 61 0.903627 
CNSX 37 -0.957113 NSSS 33 1.052833 
CNXX 61 0.382553 NSSX 0 -- 
COOO 524994 -0.062707 NSXX 0 -- 
COOS 34429 -0.141141 NXXX 3 2.475964 
COOX 23801 0.520038 OOOO 34212 -0.125549 
COSS 4380 0.545326 OOOS 4240 -0.052504 
COSX 58 -0.812243 OOOX 9553 1.121777 
COXX 65 0.359781 OOSS 300 0.203077 
CSSS 285 1.417735 OOSX 36 -0.197264 
CSSX 5 0.006247 OOXX 128 1.476181 
CSXX 4 0.730845 OSSS 38 1.063748 
CXXX 9 2.381656 OSSX 3 0.305472 

MMMM 83 7.794725 OSXX 0 -- 
MMMN 37 4.258301 OXXX 2 2.249518 
MMMO 29 4.102142 SSSS 6 2.446092 
MMMS 379 6.800300 SSSX 0 -- 
MMMX 0 -- SSXX 0 -- 
MMNN 83 1.849597 SXXX 0 -- 
MMNO 102 1.587734 XXXX 0 -- 

the structure files prior to tessellation, and all edges longer 
than 8Å were removed from the structure tessellations prior 
to analysis. Next, the four-body potential was used to score 
each tetrahedron in a structure tessellation based on the 

identity of the atomic quadruplet at its four vertices. A 
normalized topological score (TS) was calculated for each 
structure, defined as the sum of the scores for all the 
quadruplet interactions identified by the tetrahedra, divided 
by the total number of tetrahedra in the tessellation. Lastly, 
for each enzyme-inhibitor complex we computed the 
difference ∆TS = TScomplex – TSenzyme in order to investigate 
its relationship to the experimental ∆G obtained from the 
inhibition constant (ki). Calculated values of normalized 
topological scores, both for complexes and for enzymes 
without inhibitors, are tabulated in the text file of enzyme-
inhibitor complexes (see MATERIALS AND METHODS). 

  
Fig. 1.  Atomic Delaunay tessellation of the feline immunodeficiency 
virus protease enzyme (a) complexed with the C2 symmetric inhibitor 
3TL and (b) with no bound inhibitor  (PDB ID: 6FIV). 

C. Predictive Model of Binding Energy 
We obtained a correlation coefficient of r = 0.79 between 

calculated ∆TS values and experimental ∆G measurements 
(∆Gexp) for the two hundred enzyme-inhibitor complexes 
randomly selected for training a model. However, since the 
∆TS data spanned both positive and negative real numbers 
that scaled differently from ∆Gexp values, they could not be 
used directly to represent predicted ∆G values (∆Gcalc). Both 
issues were addressed with the empirical linear function  

∆Gcalc = (1 / 0.0003) × ∆TS – 6.24, 

which generated negative ∆Gcalc values that scaled similarly 
to ∆Gexp. Given the linear transformation, ∆Gcalc values and 
∆Gexp measurements also displayed a correlation coefficient 
of r = 0.79, with a standard error of SE = 2.34 kcal/mol and 
a fitted regression line of y = 0.98x – 0.41 (Fig. 2). All the 
experimental and calculated ∆G values for the enzyme-
inhibitor complexes are tabulated in the available text file 
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Fig. 2.  Scatterplot of calculated versus experimental binding energies. 
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