
  

 

Abstract—Apoptosis is a cell suicide mechanism that enables 

metazoans to control cell number in tissues and to eliminate 

individual cells that threaten the animal's survival. Dependent 

on the type of stimulus, apoptosis can be propagated by intrinsic 

pathway or extrinsic pathway. Previously, we have proposed a 

deterministic model of intrinsic apoptosis pathway which is 

bistable in a robust parameter region. Cellular networks, 

however, are inherently stochastic and significant cell-to-cell 

variability in apoptosis response has been observed at single cell 

level. In this work, we examine the impact of intrinsic stochastic 

fluctuations as well as variation of protein concentrations on 

behavior of the intrinsic apoptosis network. First, Gillespie 

Stochastic Simulation Algorithm (SSA) of the model is 

implemented to account for intrinsic noise. Using histograms of 

steady-state output at varying input levels, we show that the 

intrinsic noise in the apoptosis network elicits a wider region of 

bistability. We further analyze the dependence of system 

stochasticity due to intrinsic fluctuations, such as steady-state 

noise level and random response delay time, on the input signal. 

We find however that the intrinsic noise is insufficient to 

generate significant stochastic variations at physiologically 

relevant level of molecular numbers. Finally, extrinsic 

fluctuation represented by variations of two key proteins is 

modeled and the resultant stochasticity of apoptosis timing is 

analyzed. Indeed, these protein variations can induce cell-to-cell 

stochastic variability at a quantitative level agreeing with 

experiments. Therefore, we conclude that the heterogeneity in 

intrinsic apoptosis responses among individual cells plausibly 

arises from extrinsic rather than intrinsic origin of fluctuations.  

  

I. INTRODUCTION 

The regulation of cells through apoptosis (programmed 
cell death) is a critical biological process involved in normal 
development as well as stress responses of multicellular 
organisms [1]. Apoptosis maintains a balanced number of 
cells and thus homeostasis. Excessive apoptosis leads to 
atrophy conditions such as neurodegenerative diseases while 
the failure to trigger apoptosis causes accumulation of 
dangerous cells and increased risk of tumor development. 
Apoptosis is mediated by two interconnected signaling 
pathways: the extrinsic pathway, activated in response to 
binding of extracellular ligands to death receptor, and the 
intrinsic pathway, initiated by intracellular death-inducing 
stimulus (hypoxia, DNA damage, etc.) [2]. Both pathways 
employ cascades of caspases, a family of intracellular cysteine 
proteases, to execute final cell death [3].  

There have been considerable efforts in mathematical 
modeling and analysis of the biochemical network of extrinsic 
apoptosis, whereas the intrinsic apoptosis pathway has 
received less attention [5-7]. Based on the Fusseneger model 
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[8], we have developed a deterministic model of intrinsic 
apoptosis pathway (Fig. 1) governed by ordinary differential 
equations (ODEs), where the intrinsic caspase activation 
pathway and an additional positive feedback are incorporated 
[8]. We have shown previously that the steady-state response 
of the deterministic model exhibits bistability with a robust 
parameter region [8]. In this study, we examine the impact of 
stochastic variations on behavior of intrinsic apoptosis 
pathway, aiming to elucidate the plausible sources of the 
significant cell-to-cell variability in apoptosis response 
observed at single cell level recently [9]. We start with 
simulations of the model with intrinsic fluctuations, which is 
introduced by biochemical processes with low reactant 
numbers [10]. Standard Gillespie SSA of our model is 
implemented to account for intrinsic fluctuations in 
biochemical reactions [11]. The resultant bistability region 
expands as compared to the deterministic model due to 
intrinsic noise. Other system stochasticity due to intrinsic 
fluctuations, such as steady-state noise level and varying 
response delay time, are computed and their dependence on 
input signals is analyzed.  We find that the intrinsic noise is 
insufficient to generate the observed cell-to-cell variations at 
physiologically relevant level of molecular numbers. Next, 
extrinsic noise represented by variations of two key apoptosis 
proteins, Cytochrome C protein (CC) and inhibitors of 
apoptosis (IAP), is integrated into the deterministic model and 
the resultant stochasticity are analyzed. Our simulations show 
that significant variability of the timing of intrinsic apoptosis 
response at single cell level can be induced by the variations of 
both proteins with a quantitative level comparable to 
experimental measurements. 

II. RESULTS 

A. Deterministic Model of Intrinsic Apoptosis Pathway 

Our deterministic model of intrinsic apoptosis pathway is 

briefly reviewed here. The reaction scheme shown in Fig. 1 

includes the core caspase cascade of intrinsic apoptosis. The 

pathway is initiated by the permeabilization of the 

mitochondria and the subsequent release of Cytochrome C 

(CC) that leads to a cascade of caspase activation. CC then 

binds to apoptotic protease-activator protein-1 (Apaf-1), 

forming a complex termed apoptosome. The binding with 

apoptosome transforms Pro-caspase 9 (c9p), precursor of 

active caspase, to its active form, Caspase-9 (c9a). The 

executioner pro-caspase (c3p) is activated by c9a to form 

active executioner caspase (CEA) through a process called 

proteolysis. CEA then cleaves vital cellular proteins and other 

caspases, driving the irreversible apoptosis process. An 

experimentally suggested positive feedback from CEA to c9a 

is included, which induces bistability of the model [12]. 

Finally CEA is subject to inhibition by IAP [7].  

Modeling Cell-to-Cell Stochastic Variability in Intrinsic Apoptosis Pathway 

Hsu Kiang Ooi and Lan Ma, Member, EMBS. 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5498978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

 

Figure 1.  Intrinsic apoptosis model describes the activation of caspase 
cascade by the release of Cytochrome-C from the mitochondria. 

 

Our deterministic model is represented by five 

interconnected ODEs, which are mostly adopted from the 

Fussenegger model except for the positive feedback loop [7]. 

An instance of interconnectivity is the coupling of a1cc in 

equation (1) with equations (2) and (3). Note that all the 

binding and unbinding processes are represented by 

Michaelis-Menten kinetics under the quasi-steady-state 

assumption, where Ki (i = H, K, L, P, U) are the associated 

equilibrium constants of the binding processes. The formation 

of the complex Apoptosome is represented in equation (1). 

The binding process of CC to Apaf-1 occurs at a rate constant 

of kf1. This complex dissociates at a rate constant of kr1 and the 

complex is degraded at a rate constant of µ3.  
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Next, Apoptosome binds to Pro-caspase 9 (c9p) for 

activation. This is modeled by equation (2), where c9p is 

constantly synthesized with a rate of Ω9, converted to 

caspase-9 (c9a) with a rate constant of kf2 and degraded with a 

rate constant of µ4.  
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Once activated, c9a shown in equation (3) is produced from 

c9p with a rate constant of kf2 and degraded with a rate 

constant of µ5. The positive feedback introduced is a Hill 

function with a Hill Constant (HC) and a Hill coefficient of 1, 

shown in equations (2) and (3).  
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The executioner pro-caspase (c3p) is expressed at a constant 

synthesis rate of ΩEZ, activated to become executioner 

caspase c3a (CEA) by c9a with a rate constant of kf3, and 

degraded with a rate constant of µ6 in equation (4).  
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In equation (5), the activation of c3a by c9a is induced with 

cooperativity n=1.5. CEA is degraded with a rate constant of 

µ7. IAP, assumed to have constant concentration in the 

deterministic model, degrades CEA following 

Michaelis-Menten kinetics with a rate constant of ksu.  
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B. Stochastic Simulation of Intrinsic Noise 

There has been extensive study of stochastic extrinsic 

apoptosis pathway [4, 13-14]. To investigate the influence of 

stochastic fluctuations on intrinsic apoptosis network, we 

apply the standard Gillespie SSA to our model accounting for 

the intrinsic noise. Specifically, the model is decomposed into 

12 reaction (Rn) steps corresponding to the 12 elementary 

biochemical reactions (Table 1):  Rn 1,2,3 (for apoptosome), 

Rn 4,5,6 (for c9p), Rn 5,7 (for c9a), Rn 8,9,10 (for c3p) and 

Rn 9,11,12 (for CEA). The decomposition step is done by 

identifying the molecular increment or decrement for each 

term in every ODE and assigning the identified terms to its 

corresponding elementary reaction. Each step is assigned 

with a reaction-occurrence probability and a random time 

interval for the next reaction, both dependent on its 

deterministic reaction rate (propensity function) [11]. For 

each iteration, SSA stochastically determines the next 

reaction and the time interval for the next reaction. The 

algorithm updates the numbers of molecules for each reacting 

species and the probability of each reaction at every iteration.  

 

Table 1.  Elementary reactions of the stochastic model denoted by their 
corresponding propensity functions (PF).  
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Figure 2. 150 time trajectories of CEA, representing apoptosis response in 
150 cells are plotted at different CC values. The amount of time taken to 

activate CEA has less variability at high CC (i.e. 800) than at low CC (i.e. 
200).  

 

 

 
Figure 3.  Histogram of steady-state CEA response. Bimodal distribution 

exists around two steady states , one at CEA=950 (High Steady State) and the 

other at CEA=20 (Low Steady State). The bimodal distribution implies 
bistability in the system. Bistability persists for the number of CC molecules 

in [20, 800]. 

Each run of stochastic simulation represents response in a 
single cell. A sample size of 150 cells is used. All the 
computations are implemented in MATLAB (Mathworks) and 
run on a 96-node computer cluster. 

To model the effect of intrinsic noise, we first assume that 
the number of each reacting species involved in the intrinsic 
apoptosis pathway is below 1000 in an individual cell. Plotted 
in Fig. 2 are the 150 stochastic time trajectories of the output 
CEA response under varying numbers of Cytochrome C input. 
Each of the activation curve of CEA exhibits sigmoid shape, 
converging to an elevated steady state. In addition, there exists 
cell-to-cell variability in terms of the timing of CEA activation 
in that CEA in some cells is switched on later than other cells 
and higher number of CC induces less timing variability, 
consistent with experimental measurements of apoptosis 
dynamics [9]. To see if bistability holds for intrinsic apoptosis 
under intrinsic noise, histograms of the steady state of CEA 
(150 cells), under varying amount of input signal CC, is 
plotted in Fig. 3. We assume that bistability exists if the 
histogram presents bimodal distribution. Fig. 3 shows that 
bistability exists when the number of CC is greater than 20 
(data not shown) and it persists till CC=800, indicating that the 
fold change of bistability region under intrinsic noise is above 
4 times that of the deterministic model (where bistability 
region of CC = [0.08, 0.83] (nM) [8]). Such phenomenon of 
enhanced robustness induced by intrinsic noise supports 

previous computational work which suggests that stochastic 
signaling networks may perform more robustly than their 
deterministic counterpart.  

 

Figure 4. (a) Mean noise level (circle) of the steady-state CEA response, 

with error bars indicating the standard deviation. Noise is calculated as the 
ratio of standard deviation of CEA (b) over mean of CEA (c) at steady state, 

where the simulated results (solid squares) is fitted by dashed curves.  

 

 

Figure 5. (a) Td is the time it takes to reach half maximal of the steady-state 

CEA. (b) Mean delay time, Td (black dots), as a function of CC. At low CC 

concentration, the standard deviation is larger (error bar). (c) Variance of Td 

as a function of CC, where the simulated results (solid squares) is fitted by a 

dashed curve.   
 

Next, statistics of the system stochasticity caused by 
intrinsic noise is evaluated. First, using the widely accepted 
definition of noise, namely the ratio of standard deviation over 
mean, we quantify the noise of the CEA output at steady state 
(Fig. 4). We find that at steady state the standard deviation of 
the stochastic CEA signal decreases while its mean value 
increases as the input signal CC increases (Fig. 4b, c). As a 
result, the mean noise of the output monotonically decreases 
and reaches minimum quickly with increasing amount of input 
(Fig. 4a). Secondly, each stochastic output time trajectory 
presents a delay time, Td, between the input stimulation time 
(t=0) and the output activation time (half-max time) (Fig. 5a), 
consistent with experimental results [9, 15]. Statistics show 
that the mean value of Td decreases with increasing CC level 
(Fig. 5b). In a population of 150 cells, the coefficient of 
variation (CV) of Td decreases as CC increases (Fig. 5c), again 
agreeing well with experiments [9].  

In order to simulate an accurate physiological condition 

of a cell, the number of molecules are increased to >10,000 

[9].  Shown in Fig. 6, simulations with higher number of 

molecules suppresses the noise level to a negligible CV 

(~0.01), indicating that intrinsic noise is not sufficient to 

induce the observed stochasticity (CV~0.15-0.25) [9]. 
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Figure 6. Coefficient of variation of the Time Delay, Td, of CEA activation 

vs the number of CC molecules. The variability approaches a negligible CV 
values when the CC approaches 10,000 molecules. ■ 

C. Simulations of Protein Variations (Extrinsic Noise) and 

Combined Intrinsic & Extrinsic Noise. 

 

 

 

 

 

 

Figure 7. Mean value of Cytochrome C concentration is log-normally 

distributed with CV = 0.25. (a) CV of Td for extrinsic noise only model. (b)  
CV of Td for intrinsic noise model combined with extrinsic noise. 

The impact of protein variations, which has been 
suggested as the source of extrinsic fluctuations for apoptosis 
pathway [9], is evaluated next. First, to simulate the variation 
of input molecules among individual cells, we assume that the 
concentration of CC is a random number obeying log-normal 
distribution around its mean value and the CV of CC is 
assumed to be 0.25, mimicking what has been measured 
before [9]. Using our deterministic model but random CC, we 
simulate 150 cells and calculate the CV of Td at varying mean 
value of CC (Fig. 7a). The CV of Td attains a peak value of 
~0.42 at CC = 0.2 nM and maintains above ~0.05. In addition, 
such extrinsic noise is applied to the stochastic model in 
previous section, simulating cells under both intrinsic and 
extrinsic noise (Fig. 7b). The combined noise leads to higher 
cell-to-cell variability with CV of Td above 0.25. 

Next, we study the extrinsic noise due to variation of IAP, 
a critical inhibitor of apoptosis, again assuming a log-normal 
distribution of IAP with CV=0.25. In Fig. 8, CC is fixed at 
different levels while IAP is random around its mean value for 
the deterministic model. The 2D heat map of the CV of Td 

 

 

 

  

 

 

 

 

 
 

Figure 8. Coefficient of variation of the time delay, Td, is shown as 2D heat 
map versus concentration of fixed CC & mean concentration of log-normally 
distributed random variable IAP. Superimposed are boundary curves of the 
deterministic bistability region with low (blue) and high (green) thresholds. 
Blank region means zero CV of Td due to zero steady state of CEA.   

shows that for the same CC concentration, increasing IAP will 
lead to higher variability in CEA activation. Comparing with 
the 2D bistability region, we find that the CV of Td is highest 
(>0.2) around the low-CC-threshold curve of the bistability 
region. The above results show that the CV of Td can achieve 
an experimentally measured level of ~0.2 under the variations 
of both proteins. Similar analysis is also done for the model 
with combined intrinsic and extrinsic noise. However, given 
the low numbers of protein molecules used (< 800), the 
random effect introduced by intrinsic noise is too strong such 
that no pattern of CV of Td due to extrinsic noise is 
discovered. 
 

III. CONCLUSION 

Through stochastic simulations and analysis of the intrinsic 
pathway of apoptosis, we find that under low number of 
reactant molecules the intrinsic noise can enhance bistability 
region. However, in a physiologically relevant case, the high 
number of molecules suppresses the intrinsic noise to a 
negligible level. Thus extrinsic noise becomes dominant 
stochastic factor for intrinsic apoptosis and simulations show 
that the variation of protein concentration can plausibly induce 
the experimentally observed cell-to-cell variability. 
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