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Abstract— Global optimization algorithms basically create a
set of solutions, classify them, and then search for the best
answer, iteratively. In this paper, a new discrete particle swarm
optimization algorithm is proposed to estimate the permittivity
arrangements of lossy multilayer structures, which represent
body tissue models. Microwave imaging (AMI) is the modality
in which the proposed algorithm is used for reconstructing
the image. The main objective of this article is to depict the
flexibility of PSO-based methods in handling complex problems
expeditiously and successfully. Our new algorithm improves
the estimation time by 85% as compared to our previous
proposed one. Here, the impact of various parameters, namely,
the AMI frequency, the immersion medium, the number of
agents, the smoothing coefficient, and the maximum velocity,
on the estimation performance are studied in terms of the
maximum estimation error. It is demonstrated that by choosing
the parameters correctly, one can achieve estimation results
with a maximum error less that 10% in only 0.1 minute.

I. INTRODUCTION

Active microwave imaging (AMI) has been recently uti-

lized in a variety of demanding applications. Basically,

in AMI, the scattered/transmitted fields from/through an

inhomogeneous structure at microwave frequency band are

collected and analyzed in order to define the composition of

the object under test. The dielectric constants of the contents

are often calculated as the indicators of the material type.

Among all applications introduced in the literature, those

assisting biomedical diagnostics have recently received a

lot of attention. A comprehensive review of these types of

applications can be found in [1]-[3]. In these studies, AMI is

used to create an image of the human body by highlighting

the contrast between dielectric constants of different tissues.

AMI techniques deal with inverse electromagnetic problems,

for which a variety of algorithms have been proposed and

studied in the literature [3]. It is quite evident that the

algorithm needs to be relatively fast and reasonably accurate

for biomedical diagnostics. However, such complex inverse

problems potentially end up with non-unique results. For

that reason, global optimization algorithms prove to be more

appropriate computational techniques for such scenarios as

compared to the analytical optimization methods. There

are some articles in the literature which use evolutionary

algorithms for similar problems (see [4] and [5]). When using

evolutionary algorithms, the main challenge is to analyze and

classify the results obtained by a large number of agents, at
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each iteration, and to lead the algorithm in the correct path,

accordingly, toward achieving the best estimation, which is

the correct composition of the tissue under the test. A burden

in this study is the penetration depth, which is restricted by

the high absorption rate of the electromagnetic energy by

body tissue at frequencies of interest to the AMI studies.

Yet, some parts of human body, such as breast, are suitable

candidates for AMI. It should be noted that since microwave

radiation is non-ionizing and microwave technology is rela-

tively cheap and reliable, AMI is a promising modality for

mass-screening in the case of breast cancer where routine

checkups are required.

In our previous work, [6], we demonstrated how PSO al-

gorithms can be successfully used as search and detection

algorithms in a complex AMI problem. There, we used two

proposed versions of PSO, based on complex number and

discrete PSO, and estimated the arrangements of complex

dielectric constants in a lossy multilayer material which was

actually a model for the breast tissue. Two main factors that

made our study distinct from the other ones available in the

literature were introducing new versions of PSO algorithm

and having a human body model with exact loss factors

introduced in the measurement studies, see [7]. These loss

factors have generally been ignored or over simplified in

order to decrease the complexity of the problem [8]-[9].

Here, we propose an optimized version of discrete PSO

(DPSO) with comprehensive study of the algorithm accu-

racy under different conditions. The new algorithm achieves

similar results with 85% improvement in the computation

time. In addition, various conditions are studied, each in a

hundred runs in order to guarantee reliability of presented

conclusions. The maximum error percentages of the complex

dielectric constants, both real and imaginary parts, are used

as the figures of merit. What is meant here by the ”maximum

error” is the maximum deviation of the estimated dielectric

constants of the layers from their corresponding actual values

in percentage. The effect of different AMI and PSO param-

eters are studied.

II. PROBLEM SCOPE AND ESTIMATION ALGORITHM

The proposed DPSO algorithm in this paper finds the

tissue-types and their corresponding dielectric constants in a

hierarchical manner (see Fig. 1). The makeup of each tissue

layer is first selected from a set of six possible tissue groups,

namely, (t1: skin), (t2: adipose dominant tissue), (t3: 30%-

80% fatty tissue), (t4: glandular tissue), (t5: blood) and (t6:

malignant tissue), see [7]. For the sake of conciseness, the

tissue-types will be called with their t-numbers throughout
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this paper. These six groups are, in fact, the tissue-types

one can expect to find inside the breast. After tissue-type

selection, the best complex values of the dielectric constants

are found inside the variation spans assigned to those tissues

in the literature,[10]. In other words, here, the inherent vari-

ations of the dielectric constants of the tissues are also taken

into account. These variations are created by differences

which exist either between different people or, in a single

person, under different conditions. We have considered 10%

as the error threshold shown in Fig. 1. It means, if all the

estimated dielectric constants have an error of lower than

10%, then the second optimization cycle is activated. It is

noteworthy that the threshold of 10% does not address a

perfect estimation, however it is acceptable in AMI, since

the chance of detecting the tissue-type incorrectly is very

low at this threshold. In addition, 10% variation can even

happen due to inherent inaccuracies in this process.

It is shown in the literature that the popular PSO velocity

function (equation 9 in [11]) can be used for binary PSO,

as well. The only requirement is a mapping function which

maps the real values to zeros and ones (see equation 12

in [11]). Likewise, for DPSO, a similar mapping function

is introduced here to address the six required levels. The

mapping function is shown in 1.

S = 0.5+NT/(1+ exp(−ν × sc)) (1)

where sc is the smoothing coefficient and NT is the number

of tissue types which is equal to six for the breast tissue

considered in this paper. ν is the velocity and is a real

number. Fig. 2 shows the mapping function using different

smoothing coefficients. It should be noted that, in order

to have a correct mapping, the maximum allowed velocity

should be selected with respect to sc. To further illustrate, in

Fig. 2, any velocity value mapped inside [a−0.5,a+0.5) is

interpreted as a. Equation 2 shows the fitness function that

No

Yes

Error < Threshold?

Optimization2:
Estimate the complex
dielectric constants

Optimization1:
Estimate the tissue−type

for each layer

Fig. 1. The two considered optimization procedures.

is minimized by DPSO. R and T depict the reflectance and

transmittance coefficients.

f = ∑{||Ractual |− |Restimated ||+ (2)

|arg(Ractual)− arg(Restimated)|+

||Tactual |− |Testimated ||+

|arg(Tactual)− arg(Testimated)|};
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Fig. 2. Mapping function with different smoothing coefficients.

where arg() denotes the phase of the enclosed complex num-

ber. Assuming a narrow beam radiation, the normal incidence

of plane wave to multilayer structure is considered [12].

Here, both magnitude and phase errors are taken into account

in 2, as such quantities bear distinct information relevant to

the optimization process [12]. Also, an immersion medium

is considered to surround the tissue, as it is recommended in

many other research articles for AMI improvement [2]-[3].

The default immersion medium is assumed to be similar

in properties to the fatty tissue (t2). Two types of controlling

parameters are involved in this problem: (1) AMI parameters

and (2) DPSO parameters. AMI parameters are the immer-

sion medium, tissue thickness and the radiation frequency.

The controlling gears of DPSO are the maximum allowed

velocity (V max), which is related to the smoothing coefficient

in the mapping function, and the number of agents. The

effects of these parameters are studied in the next section

in terms of the estimation error in 100 independent runs per

analysis. Each run is limited to 1000 iterations for the first

optimization operation shown in Fig. 1 and 100 iterations for

the second one.These numbers were chosen by trial and error

in order to optimize both the final error and the computation

time.

To be able to compare the results with those presented in [6],

the tissue is modeled as a 5-layer structure (t1, t2, t4, t2, t1)

for which it is shown in the next section that 40-agent swarm

(m= 40) is fairly strong to gain an accuracy better than 10%.

Reviewing the model, one can easily recognize that this is a

model of normal breast tissue. The thicknesses of the tissues

are t1:2mm, t2:15mm, and t4:10mm. The total thickness is

4.4cm, which represents a good model for the breast tissue

when the tissue is squeezed for AMI measurement. Although

other frequencies are also studied, the reference frequency in

this paper is 1GHz, which has been proved to be appropriate

for AMI [6].

III. PARAMETER VARIATION STUDY

A. AMI Parameters

As the first AMI parameter, immersion medium is studied.

This medium acts as matching interface for the fields to

enter the body tissue with lower reflections. Fig. 3 shows

the effect of using different types of immersion media on the

detection error in 100 runs. It should be noted that, unlike
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other studies associated with AMI immersion medium, here,

the impact of this intermediate medium on the optimization

trend of the search algorithm is underscored. The dielectric

constants of air, water and fat at 1GHz are assumed to be 1,

78.2−3.796 j and 4.79−0.8 j, respectively. As it is evident

in Fig. 3, the probability of achieving a final estimation

with error higher than 10% increases to 6% in the case of

water. It is interesting that this increase in error happens for

imaginary part of the dielectric constant which has lower

significance in defining the tissue type. However, the mean

error percentage for all three cases remains between 7%

and 9%. It is worth mentioning that for the case of fat, the

maximum required iteration number is 191, which is almost

20% of the maximum iteration number of 1000 (see table

I). This study simply confirms that oily and fatty substances

are preferred for AMI.
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Fig. 3. The effect of immersion medium on detection error for a 44mm-
thick tissue at 1 GHz. Vmax, sc and m are considered to be 1.5, 5 and 40,
respectively.

Fig. 4 shows the estimation error at two other frequencies,

500 MHz, and 5 GHz. 5 GHz case, apparently, has the

highest probability of error while 1 GHz (Fig. 3) has the

lowest probability of error. It is interesting that the standard

deviation of the results achieved from 5 GHz study is

more than four times that of 1 GHz study. The mean error

percentages, however, for all the cases remain between 7.5%

and 12% (see table I). Although 500 MHz radiation has

higher chance of penetration than its 1 GHz counerpart, the

relative thicknesses of the tissue-layers with respect to the

wavelength should also be considered.
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Fig. 4. Estimation error at some popular AMI frequencies for a 44mm-thick
tissue (V max = 1.5, sc = 5, m = 40). Immersion medium is fat.

In practice, the tissue thickness is defined by the person’s

body style (fat, skinny, etc.). Here, we repeat the study

for another case in which the thicknesses of the t2 and t4

tissues are increased by 5 mm. The total tissue thickness

is 59 mm in this case. As shown in Fig. 5, the probability

of achieving an estimation with an error level higher than

10% increases to 3% when considering fat as the immersion

medium. Nonetheless, the mean error percentage for all the

cases stays in the range of 7.5-8.5%.
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Fig. 5. The error for thicker tissue( f = 1GHz, V max= 1.5, sc= 5, m= 40).

B. DPSO parameters

AMI parameters studied in previous subsection are very

important; however, they are not fully under the control of

the AMI operator. Optimization algorithm, on the other hand,

can be controlled with less limitations. In this subsection,

the impacts of some of the optimization parameters on the

estimation process are studied.

It should be noted that, correctly mapping the real velocity

values to discrete values is quite challenging. The first step is

to define the smoothing coefficient of the mapping function.

By decreasing sc, introduced in 1, the probability of achiev-

ing errors higher than 10% increases. Further increasing of

sc above 5 will not result in any further improvement either.

Therefore, here we demonstrate our results mostly consid-

ering sc =5. The second issue is the maximum velocity. In

discrete versions of PSO, due to intrinsic limitations imposed

by mapping function, V max does not have the same direct

impact on the performance as it has in the real number PSO

case. Reviewing Fig. 2, one can simply conclude that V max

should be selected with respect to sc, not only to cover all six

levels, but also to preserve a smooth variation. As shown in

Fig. 6 and Fig. 3, the average errors for sc = 0.5, 1, 2, 5 and

10 are 8.5, 8.1, 7.8, 8.1 and 7.7, respectively. Lower V max

offers higher estimation accuracy; however, it also increases

the required number of iterations in order to converge. On the

other hand, higher velocities decrease the chance of finding

the solution. sc = 5 and V max = 1.5 are the best parameter

set for keeping the error below 10% in all 100 runs for this

problem.

Finally, the number of agents is studied. It is shown in

the literature([13]) that, although having large number of

agents improves the search activity, it also increases the

optimization cost in terms of computation resources and

optimization length. Therefore, it is always desired to find an

optimum agent-number. As it is shown in Fig. 7, lowering

the number of agents from 40 to 30 increases both the

probability of achieving higher errors than the desired 10%

and the average maximum error. Furthermore, increasing the
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Fig. 6. Estimation error for a 44mm-thick tissue at 1GHz when assuming
different maximum velocities and smoothing coefficients. 40 agents are
considered.
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Fig. 7. Estimation error for a 44mm-thick tissue at 1GHz when assuming
different number of agents. V max is 1.5 and sc is 5

number of agents to 50 decreases the average error from 8%

in the case of 40 agents to 7.8%, which is not a significant

improvement.

TABLE I

OPTIMIZATION LENGTH COMPARISON

Medium F(GHz) m1 max(iter2) mean(iter) P3(high error)

air 1 40 33 222 0
water 1 40 1000 158 6

fat 1 40 191 50 0
fat 5 40 1000 454 40
fat 0.5 40 1000 370 26
fat 1 30 1000 93 0
fat 1 50 190 47 0

1 Number of agents
2 Required number of iterations for lower than 10% error
3 Probability of achieving higher than 10% error

Table I summarizes the optimization length for some of the

cases studied in this paper. Comparing these results with

those shown in [6], one can simply conclude that the new

version of DPSO, introduced in this paper, has significantly

enhanced the detection performance by decreasing the esti-

mation time by 85%.

IV. CONCLUSION

In this paper a new version of discrete particle swarm

optimization algorithm was introduced and utilized to esti-

mate the permittivity arrangement of human breast tissue

model. Active microwave imaging was considered at fre-

quencies of 500 MHz, 1 GHz and 5 GHz. The impact of

different parameters, namely, frequency, immersion medium,

tissue thickness, number of agents, smoothing coefficient,

and maximum velocity on the estimation performance were

studied in terms of the maximum estimation error. It was

demonstrated that by choosing the parameters correctly, one

can achieve fast estimation results with a maximum error

less that 10% in less than 200 iterations. This accuracy is

sufficiently high for AMI applications. Using standard 2.83

GHz PC, a set of 100 runs requires almost 10 minutes of

computational time for the introduced 5-layer model using

40 agents, smoothing coefficient of 5, and maximum velocity

of 1.5. The computation time is 0.1 minute for each run in

average which is 85% less than that reported with the other

version of DPSO.
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