
  

 

Abstract— The nonlinear mixed effects models (NLMEM) 

are widespread modeling techniques in PKPD analysis and 

epidemiological studies because they can produce a description 

of not only the individual but also of the population features. 

Moreover, they are able to deal with individual data sparseness 

by borrowing the lack of information from the entire 

population. In this way, the NLMEM do not fail where instead 

other techniques, such as the traditional individual weighted 

least squares (WLS), sometimes do. The NLME approach relies 

on the maximization of a likelihood function that due to model 

parametric nonlinearity not always has an explicit solution. 

Various techniques have been proposed to solve this problem 

including the first order (FO) and the first order conditional 

(FOCE) estimation methods that approximate the likelihood 

function through a linearization; the expectation maximization 

algorithm (EM) that maximize the exact likelihood; the 

Bayesian estimation method where a third stage of variability, 

the distribution of the population parameters, is taken into 

account [1]. Recently, new estimation methods that rely on the 

EM algorithm have been implemented in the last release of the 

population software NONMEM [2]. These methods are: the 

iterative two stage (ITS), Monte Carlo importance sampling 

EM (IMP), Monte Carlo importance sampling EM assisted by 

Mode a Posteriori estimation (IMPMAP) and the Stochastic 

Approximation EM (SAEM). Moreover, another new method is 

available, the Markov Chain Monte Carlo Bayesian Analysis 

(BAYES), next to the more known FO and FOCE. With this 

article we want to complete the Denti et al [3] simulation study 

by evaluating the newest population methods applied on the 

IVGTT glucose minimal model. 

I. INTRODUCTION 

The IVGTT glucose minimal model (MM) is a well 
known tool to study the glucose-insulin system in different 
pathophysiological states after an intravenous glucose 
perturbation. Indeed, its parameter SI, the insulin sensitivity, 
that is the overall effect of insulin to stimulate glucose 
uptake and inhibit glucose production, represents an 
important metabolic index in clinical and epidemiological 
trials. By now the model has been identified using both 
individual and population approaches. At the beginning the 
weighted least square (WLS) single subject technique was 
used and applied on the data of each individual. The WLS, 
though, in typical epidemiological conditions such as sparse 
and noisy data per individual does not produce satisfactory 
estimations. In order to improve this aspect, the population 
approaches were then introduced to identify the MM by 
exploiting the not used information spread on the subject 
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collection. Vicini et al [4] identified the MM by the iterative 
two stage (ITS), a population technique. This method is 
made up of two steps: first each subject’s data is separately 
fitted and then the population parameter estimates are 
obtained. This procedure is repeated until convergence. 
Afterwards, Agbaje et al [5] used a different population 
approach to identify the same model: the Bayesian 
hierarchical method [6]. This method adds a third stage of 
knowledge to the individual and population step that is the 
prior distribution of the population parameters. More 
recently [3], the MM was quantified using both iterative 
methods, like the Global two stage (GTS) and ITS and other 
techniques like the first order (FO) and the first order 
conditional (FOCE). These last two methods are 
approximated solutions of the nonlinear mixed effects 
models (NLMEM) approach that aims to characterize the 
individual and population description by maximizing a 
likelihood function. Due to nonlinear parametric 
dependencies it is almost impossible to have an explicit 
solution of this optimization problem. FO and FOCE 
methods fix this by approximating the likelihood through a 
linearization. This work is the natural follow up of Denti et 
al [3] where different population estimation methods, 
implemented in the software SPK [7], were tested in a 
simulation study. In particular the study aims are mainly two. 
The first is to complete the population analysis done so far in 
the MM with the latest methods implemented in the software 
NONMEM. Three new optimization techniques have never 
been applied so far to quantify the MM parameters: the 
Monte Carlo importance sampling EM (IMP) [8], the Monte 
Carlo importance sampling EM assisted by Mode a 
Posteriori estimation (IMPMAP) [2] and the Stochastic 
Approximation EM (SAEM) [9]. These three, together with 
the ITS method, are implemented in NONMEM by 
exploiting the characteristic two steps of the Expectation-
Maximization algorithm (EM). In the first step (the 
expectation step) the expectation of the log-likelihood given 
current estimates of the population parameters is calculated 
and, in the second step (the maximization step), new 
population parameters that maximize the expectation are 
computed. This procedure is repeated until there are no 
visible changes in the objective function. Note that the four 
different implementations of the EM algorithm are different 
approximations of the expectation step for which no 
analytical solution is available. The second aim of this work 
is to test the robustness of the different methods in a data 
poor context by comparing their performances on two 
randomly generated datasets obtained by removing 
respectively 50% and 75% of the original samples 
respectively. All our analysis is carried out using the 
software NONMEM VII [2]. 
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II. MATERIAL AND METHODS 

A.  Synthetic Data 

As already mentioned this work is the Denti et al [3] 

natural follow up but carried out with different software and 

estimation methods. The dataset used is the same. The 

dataset (dataset A1) consists of 58 simulated insulin 

modified IVGTT profiles (dose 330 mg/kg glucose at time 0, 

0.02 units/kg of insulin at time 20). This dataset was 

obtained through two steps. Firstly, the MM was identified 

using the individual estimation method WLS, implemented 

in the software SAAMII [10], in 58 nondiabetic young 

subjects (mean age 23±3 and mean BMI 24.5±2.9 kg/m
2
) 

that underwent an IVGTT in the Clinical Research Center at 

the Mayo Clinic, Rochester, MN. Blood samples were 

collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15, 20, 22, 

25, 26, 28, 31, 35, 45, 60, 75, 90, 120, 180 and 240 min for 

measurement of glucose and insulin concentrations. 

Secondly, the profiles were simulated using the individual 

estimates obtained at the first step and a measurement noise 

equal to the 2% of the simulated profile was added. In order 

to exploit the potentials of the population technique and to 

test the robustness of the estimates we evaluate the different 

methods performance in a data poor context. In particular the 

simulated dataset was reduced by randomly removing the 

original samples. The first time 50% of the original samples 

were randomly removed (dataset A2), while the second time 

instead 75% of the original samples were removed (dataset 

A3). In this way the typical condition of the epidemiological 

studies, that is few and noisy data per individual, was 

recreated. Note that only the glucose data were reduced 

whereas the insulin data that acts as a forcing function in the 

model was not. This choice was made because the work aim 

is to test different estimation methods and not really simulate 

a real experiment data sparseness situation. 

B. Glucose Minimal Model 

The IVGTT MM is described by: 
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where Q is the glucose mass in plasma (mg/kg) and Qb its 
basal value, Gb is the basal glucose concentration in plasma 
(mg/dL), I is insulin plasma concentration (pmol/L) and Ib its 
basal value, X is insulin action (min

-1
). The uniquely 

identifiable parameters are: glucose effectiveness SG (min
-1

), 
insulin sensitivity SI (min

-1
 pmol

-1
 L), insulin action 

parameter p2 (min
-1

) and volume V (dL/kg). The model is 
not designed to take into account the first 8 minutes of 
glucose so the corresponding measurements were excluded 
from the modeling analysis. 

C. Population Assumptions 

In the population analysis done using the NLME 

approach data are described by the model: 
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where yij is the jth observation of the ith subject at some 

known time instant xij. Here, n is the number of individuals 

and mi is the number of observations of the individual i. Pi is 

the vector of model parameters for the ith individual. The 

model parameters across the population are assumed to be 

lognormal distributed. In particular they can be described by:  
 kiep

kki
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where pki is the kth model parameter of the ith subject, θk is 

the typical value of the kth parameter common to the entire 

population and ηki is the random effect of the kth model 

parameter of the ith subject. ηi is assumed to be 

independently distributed with zero mean and Gaussian with 

Ω being a positive definite covariance matrix (4). The Ω 

values define the Between-Subject Variability (BSV). The 

omega set up matrix was chosen coherently with Denti et al 

[11] including just the correlations term between the SI-P2 

and SG-V. The variability due to measurement and model 

errors, known as the residual unknown variability (RUV), 

instead is described by εij which is assumed to be 

independently distributed with zero mean and Gaussian with 

standard deviation described by σ (proportional error 

variance) being an additional parameter to estimate:  

  .,0~
2

ijij
yN   

(5) 

D. Nonlinear Mixed Effects Methods 

The reference estimates (REF) were obtained by the 
WLS approach implemented in SAAM II [10] applied on the 
original data. Then the other methods were applied on the 
simulated dataset. At first we investigated the standard two-
stage (STS) performance which is another individual WLS 
that we implemented in NONMEM. Then we applied the 
population approach NLME that provides different 
estimation methods due to computational non feasibility of 
the exact solution of the likelihood maximization. Firstly, we 
applied the FOCE algorithm that is a linearization of the 
likelihood function. Then, we used the EM algorithm based 
estimation methods. These methods are the ITS, the IMP, the 
IMPMAP and the SAEM. Finally we applied the BAYES 
method that adds the third stage of variability due to the 
population parameters. The priors that were given to the 
population estimates were vague as in Agbaje et al [5], 
representing the lack of information about parameter 
distributions.  

E. Analysis of Results 

In order to assess the different methods performance both 
the individual and the population estimates were evaluated 
and compared to REF estimates. As far as the population 
results are concerned, we evaluated the percentages of 
discrepancy between the estimated (fixed effects and square 
root of the BSVs) and the true values. The true values are the 
geometrical mean and standard deviation of the individual 
estimates REF. As far as the individual results are concerned, 
we evaluated the goodness of the individual estimates 
assessed by the square Root of the Mean Square Error 
(RMSE): 
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where pi is the true parameter value (REF) for subject i, 
i

p̂  its 

estimate, and n is the number of subjects involved in the 

analysis. For readability purposes, these values were 

indicated as percentage of the true population mean of each 

parameter.  

III. RESULTS 

As already said, we exploited the population approaches 
to the full by analyzing both the population and the 
individual results in the simulated dataset (A1) and in its two 
reduced versions (A2-A3). Before proceeding it, is important 
to make a remark. All the methods were successful and no 
subject was excluded from the analysis. However some 
methods are more sensitive to initial estimates. In order to 
make them run smoothly we used a software feature that 
allows minimizing in cascade different methods; i.e. starting 
from the most stable whose final estimates are given as initial 
estimates to the subsequent less stable method. 

TABLE I.  POPULATION PARAMETERS  

POPULATION PARAMETERS DATASET A1
dataset A1 ∆SG ∆VOL ∆SI ∆P2

STS -2 0 0 0
(74) (173) (41) (47)

ITS 4 0 -2 1
(-25) (-1) (4) (-8)

FOCE 4 0 -2 1
(-28) (-2) (4) (-10)

SAEM 0 1 -11 -7
(-30) (1) (6) (-9)

BAYES 2 -1 0 2
(-17) (21) (8) (-2)

IMP 3 -1 -11 -7
(-25) (0) (7) (-7)

IMPMAP 5 -1 -13 -8
(-26) (-1) (10) (-5)

POPULATION PARAMETERS DATASET A2
dataset A2 ∆SG ∆VOL ∆SI ∆P2

STS 1 -1 1 -13
(93) (184) (46) (65)

ITS 10 -1 -1 -9
(-27) (0) (2) (-7)

FOCE 10 -1 -1 -8
(-29) (-2) (3) (-10)

SAEM 7 0 -9 -17
(-32) (-2) (6) (-5)

BAYES 8 -1 -1 -6
(-17) (21) (8) (-1)

IMP 7 -1 -6 -12
(-28) (-1) (4) (-7)

IMPMAP 7 -1 -10 -14
(-29) (-2) (9) (-4)

POPULATION PARAMETERS DATASET A3
dataset A3 ∆SG ∆VOL ∆SI ∆P2

STS -11 -3 -13 -4
(122) (257) (94) (107)

ITS 13 -1 -1 -3
(-40) (-18) (-10) (-31)

FOCE 13 -1 -1 -4
(-53) (-26) (-9) (-24)

SAEM 13 -1 -4 -3
(-42) (-20) (-6) (-39)

BAYES 10 -1 -1 -1
(-44) (-18) (-4) (-19)

IMP 12 -1 -5 -6
(-53) (-25) (-7) (-20)

IMPMAP 15 -2 -6 -9
(-53) (-25) (-6) (-19)

The distance of the estimated values for both the fixed effects and the 

square root of the BSV (in brackets) from the true values are reported as 

percentage differences normalized to the true values for the 3 datasets.  

These methods were SAEM, IMP, IMPMAP and 
BAYES and each one was preceded in the minimization by 
ITS which is a more stable and at the same time fast 
technique in producing reliable estimates. 

A. Population Results 

For the population estimates in dataset A1, in general, all 
methods provide results coherent with the ones that were 
used for the simulation. However, not all the methods behave 
the same. Looking at Table I, we can see that the best 
performing methods are ITS, FOCE and BAYES where all 
the fixed effects estimates discrepancy percentage do not 
exceed the 4% modulus and the discrepancies percentage of 
the BSV square root (values in brackets) do not exceed 28% 
modulus. The parameter that is worst estimated in these three 
methods in both the fixed effects and in the BSV is SG. 
Whereas SAEM, IMP and IMPMAP tend to underestimate 
SI (fixed effects percentage discrepancy values from -11% 
using SAEM or IMP to the -13% using the IMPMAP) and 
p2 (fixed effects percentage discrepancy values from -7% 
using SAEM or IMP to the -8% using IMPMAP). The 
parameter whose mean is estimated more precisely using all 
the estimation methods is V, whereas SG, SI and p2 are 
affected by a slightly larger error. The population approach, 
anyway, works better than the individual approach STS. 
Looking at Table I, one can see that STS presents the largest 
BSV. The overestimation of the variance of the population 
was expected as it is already well known in literature [12]. 
The population approach improvement due to the 
information borrowed across the population is expected to 
grow with the paucity of data. Looking now at the reduced 
dataset A2 and the furtherly reduced dataset A3, we can see 
that the discrepancy of the estimates, as expected, becomes 
larger with the samples reduction. This is true apart from 
some cases where instead there is the opposite effect. In 
particular, looking at table I we can see that if we consider 
the parameter SI estimated with the SAEM method and we 
move from dataset A1 to dataset A3, the parameter fixed 
effect seems to be estimated better with less samples. This 
effect is a typical feature of the population approach, 
especially in a poor data context. In fact when there is not 
enough individual information (i.e. few samples per 
individual), a condition that is merely tolerated by the 
individual approach, a sort of constraint is generated 
between the individual estimates that tends to bring them 
together towards the population mean. This phenomenon is 
known in literature as shrinkage [13]. Also in these two 
reduced dataset, in general the parameter whose mean is 
estimated more precisely is V, whereas SG, SI and p2 are 
affected by a slightly larger error.  The individual approach 
worsens its performance moving from dataset A2 to A3 as 
one can see clearly in Table I from the increase of 
discrepancy percentage of the BSV square root. 

B. Individual Results 

As far as the individual results are concerned, all the 
different population estimation methods perform comparable 
apart from the STS. In Table II the RMSE percentage of the 
individual estimates are presented. Looking at dataset A1, all 
the methods estimate well V and SI, whereas SG and p2 have 
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a RMSE percentage larger than 13%. Also in this case, 
analyzing the individual results, the population approaches 
behave better than the individual approach represented by 
STS. Moreover, moving the attention to the reduced datasets, 
the same trend that was previously observed in the 
population results, is present here: RMSE percentage 
increases as expected with the lack of samples. V and SI, as 
in A1 dataset individual results, are the parameters that are 
estimated more precisely. Regarding the comparison 
between the individual and the population approach, the 
population technique improvement due to the borrowed 
information across the subjects is larger in the two reduced 
datasets. In particular, the difference between the %RMSE 
values of the STS method and the other corresponding 
values of the different population techniques increases 
moving from dataset A2 to dataset A3. In other words, the 
population approach features can be better appreciated in 
severely reduced datasets. 

C.  Residual Unknown Variability  

In the population approach the residual unknown 
variability (RUV) represents the variability due to model 
error and measurement error. RUV is estimated with the 
parameter σ that was not fixed to 2% of the data (the error 

structure that was used to individually generate the data) but 
was left free to be optimized by the algorithm. In Table III 
the estimated σ in the dataset A1 for the different population 

methods are compared with the true value (2%). The 
measurement error was on average well estimated by all the 
methods apart from STS. BAYES, IMP and ITS seem to 
slightly underperform as we can see from Table III. 

TABLE II.  INDIVIDUAL PARAMETERS 

INDIVIDUAL PARAMETERS DATASET A1

dataset A1 SG VOL SI P2

STS 16.94 2.88 4.56 21.23

ITS 13.54 2.84 4.17 15.65

FOCE 13.53 2.85 4.22 15.60

SAEM 13.49 2.86 4.24 15.58

BAYES 13.73 2.78 4.04 16.21

IMP 13.56 2.84 4.24 15.65

IMPMAP 13.59 2.86 4.32 15.63

INDIVIDUAL PARAMETERS DATASET A2

dataset A2 SG VOL SI P2

STS 33.39 7.73 11.44 40.99

ITS 16.05 3.77 6.14 21.32

FOCE 16.00 3.79 6.18 21.36

SAEM 15.60 3.74 6.34 21.18

BAYES 15.48 3.91 6.10 19.69

IMP 15.55 3.74 6.13 20.74

IMPMAP 15.33 3.69 6.10 20.43

INDIVIDUAL PARAMETERS DATASET A3

dataset A3 SG VOL SI P2

STS 59.69 15.91 25.20 100.15

ITS 23.75 8.23 11.32 26.09

FOCE 23.30 8.42 11.26 24.67

SAEM 24.40 8.39 11.30 28.40

BAYES 23.06 8.07 11.84 23.11

IMP 23.07 8.37 11.20 24.03

IMPMAP 23.91 8.44 11.37 25.04
Square root of the mean square error (RMSE) of the individual parameter 

estimates expressed as percentage  of the true population mean for the 

three datasets.  

TABLE III.  RESIDUAL UNKNOWN VARIABILITY 

RESIDUAL UNKNOWN VARIABILITY

dataset A1 estimated CV

TRUE 2.000%

STS 1.686%

ITS 1.967%

FOCE 1.970%

SAEM 1.970%

BAYES 1.957%

IMP 1.967%

IMPMAP 1.970%

Estimated CV with the different methods for dataset A1.  

IV. CONCLUSIONS 

We have confirmed that the population approach behaves 
better than the individual approach and that this trend is 
more evident with the samples reduction in the dataset. Not 
all the population estimation methods perform equally as 
well. We suggest to use ITS and FOCE since they are stable 
to initial estimates and at the same time they produce reliable 
estimates. BAYES is less stable but it produces comparable 
and maybe improvable estimates if more informative 
population priors are given. Finally, from this analysis we do 
not recommend to use SAEM, IMP and IMPMAP as they 
perform slightly worse and are less stable. 
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