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Abstract² A phenomenological neural network model with 

bi-stable oscillatory units is used to model up- and down-states. 

These states have been observed in vivo in biological neuronal 

systems and feature oscillatory, limit cycle type of behavior in 

the up-states. A network is formed by a set of interconnected 

units. Two different types of network layouts are considered in 

this work: networks with hierarchical connections and hubs 

and networks with random connections. The phase coherence 

between the different units is analyzed and compared to the 

connectivity distance between nodes. In addition the 

connectivity degree of a node is associated to the average phase 

coherence with all other units. The results show that we may be 

able to identify the set of hubs in a network based on the phase 

coherence estimates between the different nodes. If the network 

is very dense or randomly connected, the underlying network 

structure, however, can not be derived uniquely from the phase 

coherence. 

I. INTRODUCTION 

Computational modeling is a powerful tool for 
understanding pathological conditions of the central nervous 
system such as epilepsy.  In our previous models we have 
shown that both realistic models [1] and phenomenological, 
metaphoric [2] models can explain and even predict certain 
features of the dynamics of real biological systems. In this 
article we continue the analysis of analytical, effective 
models of neuronal tissue concentrating on the network 
properties and collective behavior of distributed networks. 
One property of such behavior is the phase coherence, or 
phase locking, of the system. In recent years a lot of attention 
has been devoted to the apparent or measurable network 
topology [3-5]; nonetheless a clear correspondence to the 
underlying unit connectivity is purely hypothetical. In the 
present study we show that a more systematic approach is 
possible, that eventually can provide the translation between 
the connectivity topology and the large scale collective 
behavior of a distributed system within the model 
assumptions. Such correspondence can be a valuable asset in 
both directions: (1) By measuring functional characteristics 
of the system such as phase coherence, we can infer 
properties of the architecture of the structural connectivity,  
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in this way eventually the origin of a pathological functional 
state may be estimated; (2) in the context of neural 
engineering, we may be able to program a given connectivity 
topology in order to reach a certain functional state. 

The model of the individual units used in this work 
displays bi-stable behavior. Their functional state can either 
be in an up- or down-state; an oscillatory component, with a 
limit cycle type of dynamics, is active in the up-state only. A 
similar behavior is observed during in vivo animal 
experiments [6, 7], where fast oscillations are present during 
positive baseline shifts of the ongoing activity. These 
different states that each individual unit can occupy 
determine the dynamics of coherence within the network. A 
set of units within the network can only synchronize when 
fast oscillations are present in these units. 

II. METHODS 

A. Model 

In this work we use an analytical model of a bi-stable 
oscillator, which may serve as a metaphoric model of a 
lumped neural network. The behavior of the model is 
described by: 
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whereZ is the angular speed of the rotator and u defines 

the up- and down-state of the system. 

Due to random fluctuations the system can either be in an 

up-state ( 1 u ) or in a down-state ( 1� u ). The rotator is 

only present in the up-state and in the down-state the unit 
behaves as a harmonic oscillator with a steady state attractor. 
The up-state can represent paroxysmal type of behavior with 
large oscillations (epileptic seizures) and the down-state can 
represent inter-ictal behavior with output resembling filtered 
noise. 

Different units can be coupled together through a 
connectivity matrix to form a network. The connectivity is 

added to the Z  component of the model: 
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where mkC  is the connection strength between the k ±th 

and m ±th unit and N  the total number of units. The 

topology of these connections can determine the collective 
behavior of the system and in particular the phase coherence 
between units. 

The phase coherence between two complex signals 

� �tZ m  and � �tZ n  of two units is computed using: 
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B. Hubs 

By defining connections between units we create 
networks of various topological signatures. As an example, 
the network used in this work consists of ten units and all 

connections are symmetrical: kmmk CC  . Furthermore, 

here we only consider binary connections. The strength of 
the connection can be either zero, no connection, or one. In 
order to analyze the behavior of the network we start with a 
simple graph structure consisting of just two highly 
connected nodes (hubs) while each of the other nodes is 
connected to only one of these hubs. The graph of this 
network is shown in the upper panel of Figure 2. 

C. Random network 

It would be of high value if we were able to reconstruct 
the network connectivity based on the determined 
synchronization of the different units. Therefore we create a 
random network where the weights of the connections are, as 
above, either zero, no connection, or one, connected. From 

this connection matrix C , the minimal path length, between 

two different nodes can be computed. Also the degree (total 
amount of connections) of each node can be extracted from 
the connectivity matrix. 

D. Nonlinear association index 

To quantify the relation of the phase locking and the 
minimal path length between two nodes over the entire 
network the nonlinear association index, known as h

2
, is used 

[8]. This index measures the best signal to noise ratio of any 
nonlinear map between two signals and it has values between 
h

2
=1, which indicates the existence of an exact functional 

mapping between signals, and h
2
=0, which shows no such 

functional mapping. 

E. Simulations 

All simulations are performed for 50000 simulation 
seconds. Gaussian noise is added with a mean of zero and a 
variance of one, a multiplication factor of 0.4 is used. In 
order to avoid spurious synchrony due to parameter fine 
tuning, the angular speed, Z , is different in each unit of the 

network and is randomly selected during the initialization 
from a normal distribution with a mean of five and a 
standard deviation of 0.5. The connectivity parameters 
depend on the experiment. Simulink ® (Mathworks Inc, 
Natick, MA) was used for the simulations and MatLab® 
(Mathworks Inc, Natick, MA) for analysis of the results. 

III. RESULTS 

In Figure 1 the signal of one unit is shown. It is clearly 
visible that it has up- and down-states. The oscillatory 
behavior starts increasing during the transition from down- to 
up-state and it is maximal when the up-state is reached. 

 

Figure 1.  The signal of a single unit of the model. The down-state, until 

t=5635, shows no oscillations, while the up-state, starting at about t=5640, 

shows clear oscillatory behaviour. 

A. Hubs 

The upper panel of Figure 2 shows a network, with 
connections as described by (3), consisting of two hubs, 
nodes 1 and 8. The other nodes are only connected to one of 
these hubs and the hubs are connected to each other. The 
lower panel shows the phase locking between the nodes. The 
hubs show a high phase locking with directly connected 
nodes. Nodes that are not directly connected, but connected 
with the same hub show less phase locking, although still 
significant. Even nodes connected to one hub show 
significant phase locking with the other hub. The non hub 
nodes do not show phase locking with nodes directly 
connected to the other hub. 

Figure 3 shows the distance, or minimal path length, 
matrix (upper panel) and the relation of the phase locking 
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with the distance between nodes (lower panel). The box plot 
shows that the phase locking of pairs of nodes with the same 
distance is well clustered. The nonlinear association index 
between phase locking and distance is h

2
=0.97. 

 

Figure 2.  Top: Graph of the network of units. Node 1 and 8 are the hubs. 

Bottom: Phase locking of the different units. Zero (black) means no 

synchronisation and one (white) denotes fully synchronised units. 

 

Figure 3.  Top: Distance matrix of the graph as shown in Figure 2 upper 

panel. Bottom: Box plot of the phase locking as shown in Figure 2, lower 

panel, grouped by distance. The coloured dots correspond to the colours in 

the upper panel. 

B. Random network 

The upper panel of Figure 4 shows a randomly connected 
network. In contrast to the previous network, where the 
network is very sparsely connected we now obtain a very 
densely connected network. This is also reflected in the 
phase locking diagram in the lower panel of Figure 4. In 
general the nodes are highly synchronized with other nodes, 
although at some positions we can observe significant less 
phase locking, especially the phase coherence of node 7 with 
node 2 and node 10 is very low. In the distance matrix, 
shown in the upper panel of Figure 5 , it is shown that the 
distance between those nodes has the value three, which is 
the maximum distance found in this network. 

In the center panel of Figure 5 the relation between the 
inter-node distances and the phase locking becomes more 
diffused in comparison with the sparse network. Clusters 
overlap and are not separable anymore. The h

2
 index 

between phase locking and distance is h
2
=0.81, which is 

slightly lower than for the previous network.  
In the lower panel of Figure 5 the relation between the 
degree of a node and the average phase locking with all other 
nodes is shown. It shows that the average phase locking 
increases with the number of connections, but not linearly. 

 

Figure 4.  Top: Graph of the network of units. Bottom: Phase locking of 

the different units. Zero (black) means no synchronisation and one  (white 

denotes fully synchronised units. 
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Figure 5.  Top: Distance matrix of the graph as shown in Figure 4 upper 

panel. Center: Box plot of the phase locking a shown in Figure 4, lower 

panel, grouped by distance. The coloured dots correspond to the colours of 

the distance matrix in the upper panel. Bottom: Boxplot of the average 

phase locking of a node with all other nodes grouped by degree of the node. 

IV. CONCLUSIONS AND DISCUSSION 

We show that in a network of model units eliciting bi-
stable behavior calculating the phase coherence between 
different units can provide information on the connectivity 
topology of the network. The phase locking is only present in 
the up-state of the model units when they are in a state of 
limit cycle, since the down-state has no oscillatory 
component. Therefore the transitions between up- and down-
states in the model are part of the phase locking mechanism. 

The experiments with clearly defined hubs in the network 
show a distinct difference in phase locking in relation to the 
distance from one node to another node. The larger the 
distance between nodes, the less phase locking occurs. In the 
random network analysis this effect is much less pronounced, 
which is also shown in the lower value of h

2
. One of the 

reasons for this is that the minimal path between two nodes is 
not necessarily the only path. Especially in highly connected 
networks there are more routes from one node to the other. 
All these distinct different routes contribute to the phase 
locking of two nodes. This causes more diffusion of the 
phase coherence and the clusters start to overlap. When 
viewing only the phase coherence of the signals, it is not 
possible to trace back to the underlying network topology. 
However, if some nodes in the network have a significant 
higher degree, what we may call super hubs, this might still 

be visible in the phase locking of the signals. Also very 
sparsely connected nodes, with a large distance to other 
nodes are to be recognizable by looking at the phase 
coherence. 

In this study we have only investigated the contribution 

of the ZZ � -connections of the model. These are not the 
only type of connections contributing to the total network 
behavior. We can, for example, think of some collective 
couplings, where the total amount of synchronization can 
force the units to go back to the down-state. Also internal 
couplings within one unit can be realized. One type of self 
connection can be self termination of an up-state. This type 
of connection can produce effects reminding those of hyper 
polarization activated inward currents in a neural network 
[9]. 

 

REFERENCES 

1. Suffczynski, P., S. Kalitzin, and F.H. Lopes Da 

Silva, Dynamics of non-convulsive epileptic 

phenomena modeled by a bistable neuronal 

network. Neuroscience, 2004. 126(2): p. 467-484. 

2. Kalitzin, S., et al., Computational model 

prospective on the observation of proictal states in 

epileptic neuronal systems. Epilepsy Behav, 2011. 

22 Suppl 1: p. S102-9. 

3. Rubinov, M., et al., Small-world properties of 

nonlinear brain activity in schizophrenia. Hum 

Brain Mapp, 2009. 30(2): p. 403-16. 

4. Wilke, C., G. Worrell, and B. He, Graph analysis 

of epileptogenic networks in human partial 

epilepsy. Epilepsia, 2011. 52(1): p. 84-93. 

5. Martini, M., et al., Inferring directional interactions 

from transient signals with symbolic transfer 

entropy. Phys Rev E Stat Nonlin Soft Matter Phys, 

2011. 83(1-1): p. 011919. 

6. Bragin, A., et al., High-frequency oscillations after 

status epilepticus: epileptogenesis and seizure 

genesis. Epilepsia, 2004. 45(9): p. 1017-23. 

7. Bragin, A., C.L. Wilson, and J. Engel, Jr., Voltage 

depth profiles of high-frequency oscillations after 

kainic acid-induced status epilepticus. Epilepsia, 

2007. 48 Suppl 5: p. 35-40. 

8. Kalitzin, S.N., et al., Quantification of 

unidirectional nonlinear associations between 

multidimensional signals. IEEE Trans Biomed Eng, 

2007. 54(3): p. 454-61. 

9. Koppert, M.M., et al., Plasticity-modulated seizure 

dynamics for seizure termination in realistic 

neuronal models. J Neural Eng, 2011. 8(4): p. 

046027. 

 

 

 

5461


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

