
  

  

Abstract— A major challenge associated with understanding 

mild traumatic brain injury (mTBI) is the absence of 

biomarkers in standard clinical imaging modalities. 

Furthermore, the inhomogeneity of mTBI location and 

intensity, combined with latent symptoms further complicates 

identification and treatment. A growing body of evidence 

suggests that the thalamus may be injured or susceptible to 

change as the result of mTBI. A significant number of 

connections to and from cortical, subcortical, cerebellar and 

brain stem regions converge at the thalamus. Furthermore, the 

thalamus is also involved with information processing, 

integration and the regulation of specific behaviors.  We use 

graph theory analysis to evaluate intrinsic functional networks 

of the left and right thalamus in mTBI subjects (N=15) and 

neurologically intact healthy controls (N=12). We also explore 

neural correlates of the thalamic network architecture with 

clinical assessments. Our results suggest the presence of distinct 

unilateral thalamic differences in mTBI subjects. We also 

observe correlations of the thalamic changes with clinical 

assessments. The findings from this study have implications for 

functional networks in the thalamus and its projections for 

application as a potential biomarker for mTBI detection. 

I. INTRODUCTION 

Traumatic brain injury (TBI) is an important public health 

care concern with an estimated 1.7 million cases reported 

annually and a corresponding financial burden of 

approximately $56 billion for lifetime total cost of treatment 

in the civilian population [1,2]. In the military population, it 

is estimated that there are up to 360,000 service members 

who suffer from TBI [1,3]. Mild TBI (mTBI) is the most 

prevalent form of TBI and accounts for 89% of all reported 

TBI incidents [3]. Assessing the effects of mTBI within 

individuals is challenging and sometimes controversial 

because unlike stroke or severe TBI where clear locations of 

neurological infarct are visible, the focal abnormalities are 

often not detected using standard clinical imaging modalities 

(CT and MRI) in cases of mTBI [4,5]. Due to the 

inhomogeneity of mTBI damage location and intensity, 
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individuals frequently experience varied symptoms, some of 

which are transient [6,7]. Others symptoms may occur at a 

higher latency from the onset of injury [6,7]. These 

symptoms contribute toward disruptions to activities of daily 

living and increase the risk of chronic impairment.   

Diffuse axonal injury in white matter (WM) tracts has 

been identified as a common underlying cause for deficits 

associated with TBI [8,9,10]. However, there is a growing 

body of evidence suggesting that TBI could induce thalamic 

injury, classically identified as gray matter (GM) tissue, 

leading to abnormal activations and subsequent impairment 
[10,11,12]. The thalamus has been labeled as the ‘relay 

station’ of the brain and is responsible for transmitting 

information to and from multiple cortical, subcortical, 

cerebellar and brain stem regions [13,14]. Several major 

pathways that involve cognitive, motor, sensory and memory 

related functions converge through the thalamus. Although 

the thalamus is classified as GM, in fact it contains many 

white-matter axons connecting to and passing through it. It is 

involved with processing and integrating information, and in 

addition also regulates specific behaviors such as alertness,  

mental state, and some motor and sensory functions [13,14].  
The main objective of this study is to examine and 

quantify the intrinsic functional networks of the thalamus at 

resting state, using measurements of graph theory. We also 

explore the association between thalamic network 

architecture and clinical assessments. We hypothesize that 

changes within the intrinsic networks of the thalamus 

associated with mTBI can be detected and quantified at 

resting state.     

II. METHODS 

A. Subjects 

A total of 15 USA military active duty male subjects (age 
= 25.6 ± 4.4 years) who had returned from Afghanistan or 

Iraq and were clinically diagnosed with mTBI (143.3 ± 85.4 
days since injury) were recruited for this study. The control 
subjects consisted of 12 individuals (M = 9, F = 3, age = 26.4 
± 5.8 years) with no history of brain trauma. All subjects 

gave written informed consent to participate in the study, 
which was approved by the institutional review board of the 
Walter Reed National Military Medical Center 

B. Clinical Assessments 

The mTBI subjects were administered 12 

neuropsychological tests to assess neuropsychologic 

symptoms and neurocognitive function. These tests were the 

Figural Fluency Test, Delis-Kaplan Executive Function 

System (DKEFS), Conners' Continuous Performance Test 
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(CPT), California Verbal Learning Test (CVLT), Weschsler 

Adult Intelligence Scale (WAIS), Weschsler Test of Adult 

Reading (WTAR), Personality Assessment Inventory (PAI), 

36-Item Short Form Health Survey (SF36), Brief Symptom 

Inventory (NBSI), Post Traumatic Stress Disorder (PCL-C) 

and the Automated Neuropsychological Assessment Metrics 
(ANAM). 

C. Data Acquisition and Experiment Paradigm 

Images were acquired on a Discovery 750 MRI scanner [GE 

Healthcare, Waukesha, WI] with a 32-channel phased array 

head coil [MR Instruments, Inc. Minnesota, MN]. Whole 

brain functional MRI (fMRI) data were acquired with an EPI 
pulse sequence in the sagittal plane (TE/TR = 25/2000 ms, 

FA = 60°, in plane resolution = 3.75!3.75!4mm3, matrix 

size 64!64 and FOV 240mm).  A T1-weighted anatomical 

scan of the entire brain (3D BRAVO sequence: TR/TE = 

6.7/2.5 ms, FA = 12°, Resolution = 0.5 ! 0.5 ! 0.5 mm3) 

was also acquired. In this paper, we present results from a 
resting state fMRI task, which was a subset of a larger 

number of anatomical and functional scans. During the 

resting state task, subjects were asked to lie supine in the 

scanner with their eyes closed for 6 minutes.  

D. Data Analysis 

The AFNI software package [15] was used for 3D head 
movement correction and to perform temporal interpolation 

to correct for slice time acquisition differences. The first 3 

time points were discarded to account for magnetic field 

equilibrium. Data sets were transformed into NIfTI format 

[http://nifti.nimh.nih.gov]. Individual subject segmentation 

of cortical and subcortical brain regions was performed 

using Free Surfer based on the MNI305 atlas [16,17]. Using 

the resulting individual segmentation information, raw time 

series information was extracted from all voxels of the 

thalamus for each subject.  

 Subsequent analysis was performed using custom written 
MATLAB scripts [Mathworks Inc., Natick MA]. Data were 

temporally filtered using a finite impulse response, zero 

phase distortion bandpass filter (0.01 – 0.1Hz)[18,19]. The 

linear correlation coefficient was calculated between voxels 

using the methods described in Eguiluz, et. al. [20]. A 

correlation threshold of 0.7 was applied to the correlation 

matrix which was subsequently binarized to create an 

unweighted and undirected network [21]. Next, graph 

theoretical analysis involving the measurement of the mean 

cluster coefficient, efficiency, density, characteristic path 

length, and degrees was performed using the brain 

connectivity toolbox [21]. The mean cluster coefficient 
 

denotes the fraction of a specific node's neighbors that are 

also neighbors with one another and is indicative of the 

robustness of a specific network [20,21]. Efficiency is a 

measure of the traffic capacity of a network and dictates how 

reliably information is able to flow within a particular 

network [20,21]. Density represents the total number of 
connections within a specific network [20,21]. The 

characteristic path length is the average shortest connection 

between all pairs of nodes in the network [20,21]. The 

Degrees characteristic is the number of links connected to a 

specific node [20,21]. 

 An independent samples t-test was performed at a 

confidence interval of 95% using SPSS [IBM Corp., Somers, 

NY, USA] for each of the graph theory measurements to 

compare the mTBI subjects and controls. Pearson’s 

correlation was calculated using SPSS to assess the 

relationship between clinical assessments and thalamic 

network architecture. For clinical assessments that had 
correlations that were less than 0.5 with the respective 

thalamic network measurements were discarded.    

 

III. RESULTS 

A. Comparison of Group Results  

Figure 1 presents an example of intrinsic connectivity 

networks in the right thalamus for an individual subject from 

each group. The red dots indicate voxels in the thalamus and 

the black lines represent connections between voxels.  

 

    
Figure1 : Example comparing intrinsic connectivity network in right 
thalamus for single control (left) and single mTBI subject (right).  

 

The results from the t-test analysis suggests significant 

differences between groups for the mean cluster coefficient 

(F = 6.596, df = 25), p <0.017, density (F = 4.956, df = 25), 

p <0.035, degrees (F = 5.638, df = 25), p <0.026 and 

characteristic path length (F = 4.82, df = 25), p <0.038 

measurements of the right thalamus. The left thalamus did 

not reveal any statistically significant results at p < 0.05.  

Figure 2 : Average (mean) for both the right and left thalamus for each of the 5 graph theory metrics measured with ±1 SEM comparing mTBI (yellow) 

and controls (blue). The asterix (*) denotes statistical significance at p < 0.05 
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B. Assessment of Clinical Correlations with Graph Theory Functional Network Measurements 

TABLE I.  CORRELATION OF CLINICAL ASSESSMENTS WITH GRAPH THEOERY ANALYSIS METRICS FOR RIGHT THALAMUS 

 
Mean Cluster 

Coefficient 

Characteristic 

path length Degrees Density Efficiency 

Right Thalamus R
2 p val R

2 p val R
2 p val R

2 p val R
2 p val 

CPT Reaction Time     0.527 0.044 0.515 0.049   

CPT Number Omissions 0.681 0.005         

NBSI Change in taste and/or smell     0.591 0.02 0.589 0.021   

NBSI Loss of appetite or increase appetite     0.558 0.031     

NBSI Headaches       0.531 0.042   

NBSI Difficulty making decisions       0.051 0.052   

NBSI poor concentration, cannot pay attention, 
easily distracted         0.537 0.039 

PCL-C difficulty concentrating     0.508 0.053 0.504 0.055 0.564 0.029 

PAI mania       0.822 <0.001 0.614 0.015 

SF36 Q36 My health is excellent   -0.55 0.034       

SF36 Q15 Physical health limits work & 

activity      
0.534 0.04 0.506 .054 

  

SF36 Q2 Self rating of present health     0.58 0.023 0.587 0.021   

SF36 Q19 Emotional problems affecting work 
or other activities         0.535 0.04 

CVLT II Total accurate Forced Choice -0.582 0.023 0.606 0.017       

CVLT II Delayed Recall Total for Recognition 
Discrimination         

-0.526 0.044 

TABLE II.  CORRELATION OF CLINICAL ASSESSMENTS WITH GRAPH THEOERY ANALYSIS METRICS FOR LEFT THALAMUS 

 
Mean Cluster 

Coefficient 

Characteristic 

Path Length Degrees Density Efficiency 

Left Thalamus R
2 p val R

2 p val R
2 p val R

2 p val R
2 p val 

DKEFS Total Score  0.0532 0.041                 

SF36 Q36 My health is excellent  0.517 0.048 -0.53 0.042             

SF32 Q2 Self rating of present health          -0.507 0.054     -0.516 0.049 

SF36 Q Q12 Health limits bathing or 

dressing          -0.536 0.039 -0.517 0.048     

CVLT II Forced Choice Total Accurate -0.812 < 0.001 0.812 < 0.001             

 

IV. DISCUSSION 

The significant differences between the mTBI and control 
subjects for the right thalamus suggest that the use of graph 
theory analysis methods are able to adequately quantify 
intrinsic network architecture within the thalamus. 
Furthermore, the results indicate that the analysis is also 
sensitive to differences in network architecture. Overall, the 
results support our initial hypothesis.  
The research and applications of functional connectivity 
analysis have largely been focused on representing inter-
region relationships. Such analyses provide information on 
large-scale networks which are beneficial for severe and 
moderate TBI in which clear locations of injury are present. 
However, large-scale inter-region analysis may not be 
sensitive enough to detect subtle local regional changes 
which are present in mTBI. Therefore, our analysis of 
intrinsic functional networks within a specific brain region is 
unique as compared to common inter region analysis. 
Understanding local network organization and the effects of 
mTBI on network architecture presents itself as a potential 
 
 

 
 
biomarker for individual subject assessment. Graph theory is 
a model free analysis method which has very minimal a prior 
assumptions and provides a relatively unbiased approach of 
assessing functional connectivity [20,21]. Such a feature is of 
particular benefit in assessing mTBI due to the variations of 
injury location and intensity across individuals. 

A study performed by Tang et al.  [10] that examined 
functional connectivity of the resting state brain using seed 
regions of the thalamus is in agreement with our findings. 
The unilateral anomalies detected in the thalamic networks 
suggest the presence of increased variability in the resting 
state network, and even a reduction in the resting state 
network as seen by the overall lower measurements for the 
mTBI subjects. Resting state networks are known to naturally 
deactivate or disappear altogether during the performance of 
voluntary or intense tasks [22]. However, reduction in the 
resting state network at rest has been associated with 
interruptions in cognitive states. Several studies have 
consistently found strong correlations between disruptions in 
the resting state networks and neurocognitive pathologies 
such as schizophrenia, Alzheimer’s disease and attention 
deficit hyperactive disorder [22-26]. Many of these 
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neurocognitive pathologies affect various associative and 
executive regions that are known to have projections to the 
thalamus. This feature shows some overlap with the findings 
from our mTBI clinical assessments, especially in the 
correlated assessments specific to features of perception, 
mental state and self awareness. The correlations of density 
and degrees in the right thalamus that correspond with 
disruptions in smell, taste and appetite suggest possible 
changes in the thalamic nuclei as the result of possible injury. 
Research which examined thalamic lesions in stroke patients 
have reported compromised smell, taste and loss of appetite 
[27]. The correlations of density and degree with SF35, Q15 
also suggest disruptions in physical ability, however it is not 
clear from the present data if these are strictly due to 
disruptions in motor control and coordination or if these 
disruptions are the result of cognitive and emotion 
impairments.  

An interesting observation was seen in the efficiency 
measurement of the thalamic networks. Efficiency was not 
statistically significant for the left and right thalamic 
networks between mTBI and controls. This suggests that 
information was still able to flow within the thalamus. 
However, differences in network architecture as reflected by 
the mean cluster coefficient, reduced density and degrees, 
present the possibility that local reorganization within the 
thalamus has occurred as the result of mTBI. Although our 
results are promising, more research is needed. In particular, 
future work should employ a larger sample size to further 
validate the findings from this study. In addition, the 
combination of Diffusion Tensor Imaging (DTI) measures 
such as fractional anisotropy and fiber tractography would 
strengthen the understanding of the intrinsic functional 
networks and their respective architecture, and could provide 
further insight into thalamic projections.  
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