
  

 

Abstract— This paper presents a simplified nonlinear model 
for Dynamic Synapse Neural Network (DSNN) which is based 
on nonlinear dynamics of neurons in the hippocampus, using a 
recurrent neural network. The proposed model will be utilized 
in place of DSNN for various applications which require simpler 
implementation and faster training, maintaining the same 
performance as a nonlinear system model, classifier, or pattern 
recognizer. This model was tested in two different structure and 
training methods, by learning the input-output relationship of a 
few DSNNs with sets of experimentally-determined coefficients. 
The results showed that this model can capture DSNN's 
complicated nonlinear dynamics in a temporal domain with less 
computational cost and faster training. 
 

I. INTRODUCTION 

Biologically inspired technologies prevail based on their 
ability to mimic the biological functions of nature. 
Specifically, biologically-inspired computational models, in 
particular those that mimic the human brain, have been 
widely used in signal processing to take advantage of the 
capability of real neurons. The capability comes from a 
nonlinear transformation between input and output sequence 
of temporal patterns, forming neurons' memory through 
nonlinear molecular mechanisms connecting them. 

The Dynamic Synapse Neural Network (DSNN) by Berger 
and Liaw is based on experimentally-determined nonlinear 
dynamics of neurons in the hippocampus, the brain region 
responsible for forming pattern recognition memories [1]. In 
this study, processing elements are assumed to transmit 
information by variation in a series of temporal patterns, and 
connections between processing elements are modeled as a 
set of dynamic processes with different time courses of decay 
derived from experimental studies. These multiple time 
courses determine the composite dynamics of each synaptic 
connection, and as a result, synaptic output becomes a 
function of the time since past input events.  Thus, each 
network connection transforms a sequence of input events 
into a different sequence of output events.  

Although several studies applied the DSNN to the 
recognition of speech and specific type of vibration, which 
have presented encouraging results, these methods require  
lossy signal-to-spike transformations and complicated 
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processes to provide preliminary information for the 
classification process of the DSNN [2-6]. In order to deal 
with practical applications which require low computational 
cost and simple signal transformation, a Discrete Synapse 
Recurrent Neural Network (DSRNN) was implemented and 
tested as a classifier in the task of footstep and vehicle 
recognition [7, 8]. A DSRNN represents the relationship 
between input and output as a nonlinear function of past input 
and output history in a nonparametric method without the 
complicated nonlinear modeling of synaptic transmission. 
Therefore, this model can be utilized at more general 
applications which require a nonlinear modeling of 
input-output relationship.  

In this paper, we describe how a DSRNN is trained as a 
nonlinear system model to learn the nonlinear input-output 
relationship of a DSNN, to not only show that it can 
sufficiently replicate a DSNN's function as a simplified 
model for DSNN, but also show its capability as a general 
nonlinear model. 

II. DESIGN OF DSRNN 

In the DSNN, four important synaptic mechanisms 
namely calcium response, facilitation I, facilitation II, and 
inhibition have been modeled with differential equations. For 
signal processing applications, the time and weight scales of 
the differential equations are adapted for particular tasks. 
This can be considered as a temporal processing of the input. 
The process of adaptation (or learning) is involved with 
finding the relationship between the current and the past 
history of input signal.  

For a discrete algorithm, 4 difference equations for the 
DSNN’s presynapse are derived instead of differential 
equations using the impulse-invariant transformation [2] and 
described in (1), (2), (3), and (4). Each equation represents 
calcium response, facilitation I, facilitation II per input action 
potential (AP), and modulation per inhibitory action potential 
(APinh) i.e. feedback respectively. Equation (5) describes the 
output of presynapse as the overall model of the presynapse 
components. 
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From the difference equations, the input-output 

relationship of the presynapse can be re-organized in terms of 
the past values of input (AP, APinh), output (PR), and error (Em) 
as following. 
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where new variables are defined as below. 
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As Equation (6) shows, the present value of output can be 

represented by the weighted sum of past values of input and 
feedback from output. This is another interpretation of the 
temporal signal processing of DSNN's presynapse and is 
considered as the discrete synapses, the input layer of 
DSRNN with recurrent connections. The other part of DSNN 
modeling is regarding the nonlinearity from synaptic 
transmission mechanism including thresholding for release, 
and quantal release, refractory period by depletion, and 
thresholding for generation of excitatory post-synaptic 
potentials (EPSPs) in the post-synapse [1]. Adding these 
nonlinear activities to the new model, as a result, its final 
structure ends up with a lumped nonlinear function of the past 
values of input and the feedback from the output plus an 
estimation error as in Equation (11). The superscript t-1 
means the set of all past values of itself. This nonlinear 
function f is expected to be capable enough to incorporate 
spike transformation and a feature extractor as a lumped 
model.  
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The nonlinear function f is replaced with general neural 

networks here and trained accordingly. Figure 1 and Equation 
(12-14) shows one of DSRNNs with the structure of a 
recurrent neural network. 
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where R(t) is the post synaptic potential at a hidden layer 
which has recurrent connections to itself with a delay of one 
time step, and a(z), logistic sigmoid function is used as below.  
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In the DSRNN with feedforward network, all recurrent 

connections around the hidden layer, )(R
irw  are zero.  

However, it still has recurrent connections from the output as a 
feeback term by the definition of DSRNN. 

III. EXPERIMENT: MODELING DSNNS 

For a validation of the DSRNN which was defined from a 
mathematical derivation of the DSNN, multiple DSRNNs 
were trained to model various DSNNs to see if the DSRNNs 
can capture DSNN's complicated nonlinear dynamics in 
temporal signal processing. 

First, the DSRNN with feedforward neural network is 
trained using LM algorithm to mimic single DSNN's output 
as a nonlinear model. Although the DSRNN is a simplified 
version of DSNN, it is totally different from DSNN since 
input and output of DSRNN are analog whereas the DSNN's 
are spikes. However, it should be able to learn somehow 
DSNN's characteristic embedded with the capability for the 
nonlinear modeling of temporal patterns. For fair 
comparison, DSNN is set up to generate an analog membrane 
potential rather than the spike on the output. Also, a 
uniformly distributed random signal is chosen as an input 
signal on the presynapse instead of spikes. From the typical 
set of parameters of DSNN, the input and output from DSNN 
were prepared to be trained. The sampling frequency was 2 
kHz and the length of data was 10000 samples, which was 5 
seconds. The length of the delay of input and feedback were 
50 and 5 respectively. The number of nodes in the hidden 
layer was 8. After training, the Normalized Mean Square 
Error (NMSE) between the original output from DSNN and 

Figure 1. A DSRNN with recurrent network; it consists of a 
recurrent-structured neural network with recurrent components and a 
hidden layer, and feedback loop. The final output and hidden nodes’ 
output will be fed through feedback loop to the input of the network. The 
superscript t-1 on the input and feedback means the set of all past values 
of them. 
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the output from the trained DSRNN was measured for a 
quantitative measure of its modeling error. Also, NMSE was 
measured again on the same DSRNN but for the different 
input than the one during training. The same training-test 
process was repeated for the different single DSNNs which 
have different sets of parameters from each other and the 
results were presented in Table I and Figure 3.  

Another DSRNN with recurrent network was trained 
using Extended Kalman Filter algorithm in a similar way. 
Since it has additional recurrent connections, it is expected to 
have more capability for nonlinearity and dynamicity in 
system modeling. A 2x2 DSNN shown in Figure 2 was chosen 
to be modeled. For this, the two inputs of DSNN were set 

identical. One output was chosen for modeling and the other 
output was used for feedback, that is, stimulating inhibitory 
pathway. From the typical set of parameters of DSNN, the 
input and the chosen output from DSNN were prepared to be 
trained. The sampling frequency was 2 kHz and the length of 
data was 50000 samples, which was 25 seconds. The length 
of the delay of input and feedback were 50 and 10 
respectively. The number of nodes in the hidden layer was 10. 
After training and testing, NMSEs were measured and 
presented in Table II and their test samples were shown in 
Figure 4. 

 
TABLE I. Normalized mean square error for the output signal of three 

different trained DSRNNs with feedforward network 
 

DSRNN A B C 

Weights of DSNN’s 
presynapse 

[30, 0.16, 
50, 20] 

[10, 0.16, 
80, 20] 

[10, 0.16, 
50, 20] 

NMSE(%) with 
trained input 

2.1 12.5 15.1 

NMSE(%) with  
test input 

3.2 11.7 16.3 

 
 

TABLE II. Normalized mean square error for the output signal of three 
different trained DSRNNs with recurrent network 

 

DSRNN A B C 

Weights of 
DSNN’s 

presynapse 

[10 0.16 50 20; 
15 0.3 30 10; 5 
0.05 70 15; 20 

0.3 10 30] 

[13 0.2 40 15; 
19 0.3 30 11; 
21 0.02 53 10; 
15 0.4 9 22] 

[18 0.1 30 15; 
22 0.2 15 13; 
15 0.09 43 20; 

5 0.2 3 32] 

NMSE(%) with 
trained input 

2.47 1.67 1.28 

NMSE(%) with 
test input 

2.60 1.77 1.41 
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Figure 2. Block diagram of 2x2 DSNN; gray areas represent two inputs, one output, four pathways for each synaptic connection, and 
inhibitory stimulus from another output. The equation and typical values are from Berger and Liaw [1]. 
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Figure 3. Test samples from the task for learning 3 different single 
DSNNs (A, B, C in order of top to bottom); Green line: input signal, blue 
line: output signal of DSNN, red line: reproduced output signal from 
trained DSRNN, X-axis represents time in the unit of sample (0.5ms per 
sample). 
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IV. RESULTS AND CONCLUSIONS 

From the first experiment, all of test showed that the 
DSRNN successfully learned each single DSNN, being 
capable of capturing temporal dynamics of each DSNN. Most 
of error was generated from the subthreshold region since the 
DSRNN which has analog signals was not able to follow the 
fluctuation of subthreshold membrane potential. By the same 
reason, NMSE gets bigger exposing more subthreshold 
region as the DSNN becomes less excitatory, that is, the 
weights of DSNN get lower. Considering the subthreshold 
region is less important in terms of transfer of information, 
this result is not necessarily an issue. From the view of 
lumped modeling, this experiment showed the capability for 
modeling DSNNs to a certain degree. Even when it comes to 
the network of multiple DSNNs, actual nonlinear function 
still remains same per a single output only with additional 
input nodes. Also, including spike transformation to the 
DSRNN is actually unnecessary or it was already included to 
the DSRNN built since the original signal was analog signal. 
Unless the original signal is spike, there is no reason to use 
spike transformation since the signal-to-spike conversion is a 
lossy transformation in terms of information. 

From the second test with the DSRNN with recurrent 
network, each DSRNN model shows the better capability to 
capture the nonlinear temporal dynamics of DSNN with less 
error than from the DSRNN with feedforward network, even 
though the 2x2 DSNN has much more nonlinearity to learn 
compared to a single DSNN. A 2x2 DSNN’s output is the 

nonlinear sum of two different synaptic transmission 
mechanism, whereas a single DSNN’s output can be 
considered as the nonlinear synaptic transmission function of 
input. Also, a 2x2 DSNN has four times the number of 
weights and 4 different inhibitory pathways stimulated by 
another output which was not trained directly, whereas a 
single DSNN has a single inhibitory pathway simulated by a 
trained output. Considering these facts, it is obvious that the 
DSRNN with recurrent network outperforms the DSRNN 
with feedforward network, incorporating richer nonlinear 
modeling ability.  

From the view of a general nonlinear model, the choice of 
DSRNN's nonlinear function has a significant impact on the 
performance as expected. Efficient recurrent connections 
inside the network should supply enough temporal dynamics 
and memory depth to store the past data, without increasing 
computational complexity significantly. 

Overall, a DSRNN proved its capability as a nonlinear 
system model and its inheritance of DSNN's functionality. In 
addition, there is a significant benefit on its implementation, 
considering a DSNN classifier's training time using Genetic 
Algorithm from other application is more than ten times of 
DSRNN's using Extended Kalman Filter algorithm. 
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Figure 4. Test samples from the task for learning 3 different 2x2 
DSNNs (A, B, C in order of top to bottom); Green line: input signal, 
blue line: output signal of DSNN, red line: reproduced output signal 
from trained DSRNN, x-axis represents time in the unit of sample 
(0.5ms per sample). 
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