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Abstract— We know much about the glucose regulatory
system, yet the application of this knowledge is limited because
simultaneous measurements of insulin and glucose are difficult
to obtain. We present a data assimilation framework for com-
bining sparse measurements of the glucose regulatory system,
available in the intensive care unit setting, with a nonlinear
computational model to estimate unmeasured variables and
unknown parameters. We also demonstrate a method for
choosing the best variables for measurement. We anticipate that
this framework will improve glucose maintenance therapies and
shed light on the underlying biophysical process.

I. INTRODUCTION

Blood glucose concentrations are tightly regulated via a
closed-loop system involving the pancreas and liver. Dis-
ruption of these dynamics can have profound effects on the
acute and long-term health of the individual. The ability to
estimate, predict, and control glucose dynamics would be
beneficial in the Intensive Care Unit (ICU) so that targeted
therapies can be quickly implemented. Several mathematical
models of glucose homeostasis have been developed. Be-
cause simultaneous measurement of all model variables is
not possible, the use of these models has been somewhat
limited. Therefore, data assimilation methods are necessary.
These methods utilize both the mathematical models as well
as real-time measurements to produce the best estimate of
all variables and unknown parameters.

Estimates of unmeasurable values, such as interstitial
insulin, and unknown model parameters can provide crucial
insight into the health of the individual. They can also aid in
improving exogenous insulin delivery therapies. In addition,
access to the full current dynamics allows for short-term
prediction of future dynamics.

In previous work [1] we applied data assimilation methods
based on the unscented Kalman filter (UKF) to a high-
dimensional model of the sleep-wake regulatory system and
developed methods for optimizing the framework param-
eters, dynamically fitting and tracking model parameters,
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and gauging relative partial observability of model variables.
As a first step in bringing these tools to clinical ICU care
for insulin control, we apply these methods to the glucose
homeostasis system. We then demonstrate this framework
using simulation studies. Finally, we outline the potential
use of these techniques in the ICU setting.

II. METHODS

A. Glucose-Insulin Physiology

Blood glucose concentrations are regulated through the
body’s internal closed-loop feedback control mechanism.
High glucose levels serve as a signal for the pancreas to
release insulin, which speeds up glucose metabolism and
leads to glucose being stored faster than it is released.
Conversely, low glucose levels signal the pancreas to release
glucagon, which slows down metabolic reactions and leads
to faster release of glucose from the liver.

Several models of the glucose regulatory system have
been published. We use the model presented in Sturis et
al. [2], modified to include a variety of external driving, or
exogenous glucose delivery, cycles realistic to the ICU, hos-
pital, and daily life [3]. The model describes the homeostasis
between plasma insulin Ip, remote interstitial insulin Ii, and
glucose G:
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where the state variables h1, h2, and h3 form a three-stage
linear filter. Some of the major parameters include: E, a rate
constant for exchange of insulin between the plasma and
remote compartments; IG, the exogenous glucose delivery
rate; tp, the time constant for plasma insulin degradation;
ti, the time constant for the remote insulin degradation
and td, the delay time between plasma insulin and glucose
production. For a full list of all parameters, see [2], [4].
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B. UKF for State and Parameter Estimation

The Kalman filter estimates the state (all model variables)
of a system from a noisy, sparsely measured, subset of
variables. The details of the UKF algorithm can be found
in many standard textbooks and are not duplicated here. We
refer the reader to [5] as well as [6] for detailed equations.

Using the ‘augmented state’ approach, model parameters
can also be estimated using the UKF. In this algorithm,
parameters are considered as constant system variables, and
the state space is augmented with an additional variable for
each parameter to be estimated. For details, see [7].

III. RESULTS

A. Data Assimilation

We can reconstruct unmeasured variables of the glucose
homeostasis model using the UKF framework. To demon-
strate this, we generate data from this model including the
exogenous glucose delivery dynamics. We then apply a noisy
observation function which produces a noisy subset of the
variables to be used as measurements in the UKF framework.
We then reconstruct the unobserved variables and validate
these estimates by comparing to the original data.

In the ICU setting, we would likely have measurements of
plasma insulin and glucose at sampling rates between several
times per minute and once every few minutes. In addition,
we may access an estimate of the exogenous glucose delivery
rate by monitoring food intake. To mimic these experimental
conditions, we therefore observe these three variables and use
them to reconstruct the rest of the dynamics.

It should be noted that IG, the exogenous glucose delivery
rate appears as a constant in (3) because it is an observed
input into the system and has no differential equation govern-
ing its dynamics. In incorporating this model into the UKF
framework we treat this parameter as the 7th state variable
and define its rate of change to be zero. This allows us to use
this variable as an observable and to reconstruct its dynamics
when it cannot be directly measured.

An example of data assimilation with the UKF is shown
in Fig. 1A 9 day time-series of glucose dynamics was
generated form the model. The feeding regiment producing
IG consisted of random meals followed by exponential decay
of glucose delivery. Noisy versions of Ip, G, and IG, sampled
at 4 minute intervals, served as the measured variables. The
model integration time was 1 minute. To produce noisy
observations we added random Gaussian zero-mean noise,
with variance 9% of the variance of the variable, to the
generated data. The parameters used to generate the data
were also used for the UKF model. A default value of 10−2

times the variance of each variable was used for the UKF
additive covariance inflater CI . To improve reconstruction,
a factor of 10 was added to CIIG .

Shown in Fig. 1A is a 12 hour period from reconstruction
of the 9 day time-series. The true (black), measured (blue)
and reconstructed (red) values are shown for Ip, Ii, G, and
IG. All variables, including the unobserved remote insulin
Ii are reconstructed well despite the relatively low sampling

Fig. 1. Reconstruction of Glucose Model Dynamics. Noisy measurements
(blue) were recorded at 4 minute intervals and passed to the UKF framework
to reconstruct all variables. Shown are the reconstructed (red) and true
(black) dynamics for Ip, plasma insulin; Ii, remote insulin; G, glucose;
and IG, the exogenous glucose delivery rate a.k.a the food intake. A)
Reconstruction through the observation of Ip, G, IG. After a transient
period (not shown), reconstructed dynamics remain close to true dynam-
ics, even for the unobserved variable Ii. B) Reconstruction through the
observation of Ip and G. Reconstruction is reasonably good for all hidden
variables, notably for IG which receives no inputs from other variables.
The estimate for IG is noisy compared to the estimate when this variable is
observed. These perturbations do not affect the reconstruction fidelity of the
rest of the system. C) Reconstruction through the observation of Ip alone.
Reconstructed estimates are close to true dynamics. The estimate for IG is
noisy, though the peaks representing food intake are clearly seen.

rate of the measurements. The reconstructed dynamics of
the three filtering variables (h1, h2, h3) are not shown to
preserve space. We show in Fig. 3 that these variables are
also reconstructed well.

From these results, we hypothesized that measurements of
all three variables may not be necessary to ensure adequate
reconstruction. To test this hypothesis we reconstructed glu-
cose dynamics from observations of Ip and G, shown in
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Fig. 1B, and from the observation of Ip alone, shown in
Fig. 1C. Aside from the observed variables, all other settings
are the same across panels.

It can be seen in Fig. 1B that measurement of Ip and G
alone can be used to reconstruct the remaining dynamics
reasonably well. The reconstruction of Ii is very good
and similar to that in Fig. 1A when three variables were
observed. Notably, IG is reconstructed well, despite the fact
that it receives no inputs from other model variables. The
perturbations in the reconstruction of this variable result from
sparse sampling and would be reduced with higher sampling
rates. These perturbations do not overtly affect the rest of
the system.

Observation of the single variable Ip can also be used to
reconstruct the state with reasonable accuracy, as shown in
Fig. 1C. The estimate for IG is noisier, though major peaks
corresponding to food-intake can be clearly seen.

B. Empirical Observability Coefficient

Visual inspection of the similarity between the recon-
structed and true dynamics is only a qualitative result.
We therefore use the mean squared difference between the
reconstructed and true values for each variable to quantify
the accuracy of state reconstruction. We normalize this error
by the variance of each variable’s dynamics to form ε2i , a
normalized mean square error for the ith variable :

ε2i =
〈(xi − x̂i)

2〉
var(xi)

(7)

For perfect reconstruction, ε2i → 0. Its maximum depends
on the ratio of the range of the variable to the square root of
its variance. For regularization purposes, we use the inverse
of 1 + ε2i , which is bounded between [0, 1] with improved
reconstruction at higher values. We refer to this metric as the
Empirical Observability Coefficient (EOC):

EOCi,j =
1

1 + ε2i|j
(8)

where ε2i|j is the normalized reconstruction error for variable
i given measurement j.

We assert that the EOC is a useful empirical metric for
gauging the partial observability of the state space from a
measured variable within the UKF framework. Observability
is a structural property of a model defined as the ability to
recover the model state through the observation of one or
more of its outputs. In nonlinear systems, many variables
may not be observable. Nonetheless, information regarding
the partial observability of each variable can be used to
choose the optimal variable for measurement.

In Fig. 2, we show the EOC coefficient for each re-
constructed variable (down the columns) as a function of
observation variable (across rows) in a matrix format. We
have used constant default values for the UKF additive
covariance inflation parameter and relative observation noise
R. Based on the mean EOC across columns, we conclude
that the best observables for reconstruction are either Ip, G,
or IG.

The relative reconstruction accuracy of a variable from
other variables can be gauged by colors across its row. Here
we see that IG has lower EOC values for reconstruction
from any variable but itself. However, the results shown in
Fig. 1 indicate that this variable is reconstructed reasonably
well at least from Ip and G. We note that the dynamics of
IG are different than the dynamics of all other variables.
Specifically the dynamics of IG are spike-like and not
Gaussian and, as a result, the variance of this variable is
much smaller than its range. The EOC for each variable
is proportional to the ratio of the variance to the square of
the range and comparison of EOC across variables assumes
a similar variance:range ratio. Therefore, the reconstruction
fidelity of variables with a low variance:range ratio, such as
IG, is better than the EOC indicates.

We have shown elsewhere [1] that the EOC matrix, and
the information it implies about partial observability, can be
used to tune the UKF covariance inflation parameter-which
can greatly improve reconstruction fidelity.

C. Parameter Estimation

As applied here, the UKF framework requires both a
model for the dynamics as well as the model’s parameters.
In the ICU setting, we will not know the correct parameter
values for each patient and will need to estimate them. This
can likely be done in an off-line phase to arrive at a first-
guess estimate. This value can then be used as the initial
parameter value in the on-line data assimilation phase.

We estimate parameters, simultaneously with variables,
using the UKF augmented state approach [7]. We chose
to estimate the parameter tp, the time constant of plasma
insulin degradation and an indication of kidney function, for
illustrative purposes. Except for tp, the value of all other

Fig. 2. Empirical Observability Coefficient (EOC) Matrix for the
glucose model. EOCi,j is an empirical measure of how well variable i is
reconstructed from measurement of variable j. Here EOC was computed
using 9 days of data. From the EOC matrix, we observe that all variables
can observe the system reasonably well, although Ip, G, and IG would
serve as the best measurements.
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parameters in the UKF are fixed and equal to the value used
to generate the original data set.

The results are shown in Fig. 3. State and parameter values
were estimated with the UKF through the observation of Ip,
G, and IG, sampled at 4 minute intervals, for the 9 day
data set. The value for tp used to generate the data (black)
abruptly shifts at day 4.5 from a value of 6 to a value of
7, which may reflect a sudden change in kidney function. It
would be beneficial in the ICU setting if we could detect the
underlying parameter as well as any abrupt changes in its
value. The parameter estimate (magenta) stays close to the
true parameter value during periods of stability, before day
4 and after 5. During the abrupt change, there is a transient
period where the estimated parameter value is smaller than
the true value. The rate of this convergence is proportional to
the sampling rate of the measurements, with higher sampling
rates resulting in shorter convergence times.

The reconstructed states between the days 3-6 are shown in
the bottom panels of Fig. 3. These values are estimated in the
same UKF step used to calculate parameter estimates. In this
scheme, the UKF model was incomplete since it contained
an unknown parameter value. Despite this deficit, the UKF
framework accurately estimated system dynamics.

IV. DISCUSSION

Previously, we have implemented a data assimilation
framework to study sleep-wake dynamics [1]. During this
process we developed novel tools to assess the partial ob-
servability of a non-linear system using the UKF framework,
developed a method to use this observability analysis to

Fig. 3. Parameter Estimation with UKF for reconstruction of glucose
model from measurements of Ip, G, and IG, sample at 4 minute intervals,
with unknown value for parameter tp. Parameter tp used to generate the
data (black) abruptly shifts at day 4.5 from a value of 6 to a value of
7, which might reflect a sudden change in kidney function. A) Parameter
estimate (magenta) is shown overlapped with the true parameter value used
to generate the data (black). The estimated parameter is close to the true
value during periods where the parameter has a low value, a high value, and
when the parameter undergoes a sudden shift. B) True (black), measured
(blue) and reconstructed (red) dynamics for some model variables shown in
the 3-6 day period.

optimize the UKF, and developed a robust parameter esti-
mation method. We now apply our toolbox to the study of
the glucose regulatory system. We are aware of another group
who has used data assimilation to study glucose homeostasis
[8], however they used a different model of glucose dynamics
and did not address framework issues such as parameter
estimation and the choice of observable.

Simultaneous measurements of glucose, interstitial insulin,
and plasma insulin would aid in maintaining appropriate
glucose concentrations in the ICU. We have demonstrated
with simulation studies that data assimilation methods can be
used to simultaneously estimate all variables of the glucose
homeostasis system. These reconstructed values enable short-
term predictions of future glucose dynamics-which may
drastically improve closed-loop glucose control. For instance,
these predictions may help to settle the question of whether
glucose should be regulated with a tight or wide margin.

We have demonstrated an intuitive method, using the
EOC matrix, to determine the observables that result in
the best state reconstruction. We found that the optimal
observed variables for the glucose system, Ip, G, and IG
coincide with measurements available in the ICU. Therefore,
data assimilation methods are suited quite well for the ICU
setting. We also show that we can reconstruct the system
reasonably well without access to all three variables, which is
important if sampling frequency is too low or measurements
are too noisy.

ICU glucose maintenance systems typically rely on
population-based data and do not have the ability to account
for individual variability [9]. Our framework allows for
estimation of parameters for each individual, even if the
initial guess for the parameter is far from its true value
or if there is a sudden change in the parameter dynamics.
This may have important implications for identifying the
individual underlying pathophysiology.
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